3,437 research outputs found

    Le refus d'aide: déni de justice

    Get PDF

    Vaporization thermodynamics of K2S and K2SO3

    Get PDF
    The vaporization reactions, vapor pressures, and thermodynamics of potassium sulfide and potassium sulfite were studied for purposes of providing fundamental data for the seed cycle in magnetohydrodynamic electric power generation. Rate of effusion studies, supported by tube furnace experiments, X-ray powder diffraction, mass spectrometry and appropriate chemical analyses and tests, revealed that potassium sulfite disproportionates at high temperatures to form potassium sulfide and potassium sulfate. Potassium sulfide was observed to vaporize incongruently, the initial vapors beng predominantly potassium atoms, with minor species being S2 and various K-S molecules. The ratio of K/S2 in the vapor is very large initially and decreases steadily with prolonged heating. Several materials were evaluated for purposes of containing K2S/K2SO3 at temperatures or = 800 C: Pt, Mo, W, quartz, machinable glass, BN, high density graphite, pyrolytic coated graphite, and alumina. Of these, only alumina was observed to be chemically inert to both K2S but reacted with K2SO3. The other materials were not suitable for either substance. Thermodynamic calculations based on measured vapor pressures and approximate free energy functions are described. Results from isothermal total mass loss experiments and from thermogravimetric experiments are also included

    Dynamics of Global Entanglement under Decoherence

    Full text link
    We investigate the dynamics of global entanglement, the Meyer-Wallach measure, under decoherence, analytically. We study two important class of multi-partite entangled states, the Greenberger-Horne-Zeilinger and the W state. We obtain exact results for various models of system-environment interactions (decoherence). Our results shows distinctly different scaling behavior for these initially entangled states indicating a relative robustness of the W state, consistent with previous studies.Comment: 5 pages and 5 figure

    Gravitational Radiation Damping and the Three-Body Problem

    Full text link
    A model of three-body motion is developed which includes the effects of gravitational radiation reaction. The radiation reaction due to the emission of gravitational waves is the only post-Newtonian effect that is included here. For simplicity, all of the motion is taken to be planar. Two of the masses are viewed as a binary system and the third mass, whose motion will be a fixed orbit around the center-of-mass of the binary system, is viewed as a perturbation. This model aims to describe the motion of a relativistic binary pulsar that is perturbed by a third mass. Numerical integration of this simplified model reveals that given the right initial conditions and parameters one can see resonances. These (m,n) resonances are defined by the resonance condition, mω=2nΩm\omega=2n\Omega, where mm and nn are relatively prime integers and ω\omega and Ω\Omega are the angular frequencies of the binary orbit and third mass orbit, respectively. The resonance condition consequently fixes a value for the semimajor axis of the binary orbit for the duration of the resonance; therefore, the binary energy remains constant on the average while its angular momentum changes during the resonance.Comment: 16 pages, 3 Postscript figures, to appear in MNRA

    It\u27s Your Land, and My Land

    Get PDF
    https://digitalcommons.library.umaine.edu/mmb-me/1108/thumbnail.jp

    Signal Decomposition Using Masked Proximal Operators

    Full text link
    We consider the well-studied problem of decomposing a vector time series signal into components with different characteristics, such as smooth, periodic, nonnegative, or sparse. We describe a simple and general framework in which the components are defined by loss functions (which include constraints), and the signal decomposition is carried out by minimizing the sum of losses of the components (subject to the constraints). When each loss function is the negative log-likelihood of a density for the signal component, this framework coincides with maximum a posteriori probability (MAP) estimation; but it also includes many other interesting cases. Summarizing and clarifying prior results, we give two distributed optimization methods for computing the decomposition, which find the optimal decomposition when the component class loss functions are convex, and are good heuristics when they are not. Both methods require only the masked proximal operator of each of the component loss functions, a generalization of the well-known proximal operator that handles missing entries in its argument. Both methods are distributed, i.e., handle each component separately. We derive tractable methods for evaluating the masked proximal operators of some loss functions that, to our knowledge, have not appeared in the literature.Comment: The manuscript has 61 pages, 22 figures and 2 tables. Also hosted at https://web.stanford.edu/~boyd/papers/sig_decomp_mprox.html. For code, see https://github.com/cvxgrp/signal-decompositio

    Mechanisms of Spontaneous Current Generation in an Inhomogeneous d-Wave Superconductor

    Full text link
    A boundary between two d-wave superconductors or an s-wave and a d-wave superconductor generally breaks time-reversal symmetry and can generate spontaneous currents due to proximity effect. On the other hand, surfaces and interfaces in d-wave superconductors can produce localized current-carrying states by supporting the T-breaking combination of dominant and subdominant order parameters. We investigate spontaneous currents in the presence of both mechanisms and show that at low temperature, counter-intuitively, the subdominant coupling decreases the amplitude of the spontaneous current due to proximity effect. Superscreening of spontaneous currents is demonstrated to be present in any d-d (but not s-d) junction and surface with d+id' order parameter symmetry. We show that this supercreening is the result of contributions from the local magnetic moment of the condensate to the spontaneous current.Comment: 4 pages, 5 figures, RevTe

    A deterministic cavity-QED source of polarization entangled photon pairs

    Get PDF
    We present two cavity quantum electrodynamics proposals that, sharing the same basic elements, allow for the deterministic generation of entangled photons pairs by means of a three-level atom successively coupled to two single longitudinal mode high-Q optical resonators presenting polarization degeneracy. In the faster proposal, the three-level atom yields a polarization entangled photon pair via two truncated Rabi oscillations, whereas in the adiabatic proposal a counterintuitive Stimulated Raman Adiabatic Passage process is considered. Although slower than the former process, this second method is very efficient and robust under fluctuations of the experimental parameters and, particularly interesting, almost completely insensitive to atomic decay.Comment: 5 pages, 5 figure

    Quantum error-correcting codes associated with graphs

    Full text link
    We present a construction scheme for quantum error correcting codes. The basic ingredients are a graph and a finite abelian group, from which the code can explicitly be obtained. We prove necessary and sufficient conditions for the graph such that the resulting code corrects a certain number of errors. This allows a simple verification of the 1-error correcting property of fivefold codes in any dimension. As new examples we construct a large class of codes saturating the singleton bound, as well as a tenfold code detecting 3 errors.Comment: 8 pages revtex, 5 figure
    • …
    corecore