69 research outputs found

    Teaching Performing Groups

    Get PDF

    In vitro and in vivo activity of 3-alkoxy-1,2-dioxolanes against Schistosoma mansoni

    Get PDF
    Objectives Compounds characterized by a peroxidic skeleton are an interesting starting point for antischistosomal drug discovery. Previously a series of 3-alkoxy-1,2-dioxolanes, which are chemically stable cyclic peroxides, demonstrated significant in vitro activity against Plasmodium falciparum. We aimed to evaluate the potential of these compounds against Schistosoma mansoni and elucidate the roles of iron and peroxidic groups in activity. Methods Drugs were tested against juvenile and adult stages of S. mansoni in vitro and in vivo. Selected structures were assessed in vitro against schistosomes in the presence of additional iron sources. In addition, drugs were tested in vitro and in vivo against Echinostoma caproni, a non-blood-feeding intestinal fluke. Finally, the activity of non-peroxidic analogues was evaluated. Results Three dioxolanes displayed IC50s ≤20.1 μM against adult schistosomes and values as low as 4.2 μM against newly transformed schistosomula. Nonetheless, only moderate, non-significant worm burden reductions were observed after treatment of mice harbouring adult infections. Drugs lacked activity against juvenile schistosomes in vivo. Two selected dioxolanes showed in vitro activity against E. caproni down to concentrations of 5 mg/L, but none of the compounds revealed in vivo activity. All tested non-peroxidic analogues lacked activity in vitro against both parasites. Conclusions Selected dioxolanes presented interesting in vitro activity, but low in vivo activities have to be overcome to identify a lead candidate. Although the inactivity of non-peroxidic analogues underlines the necessity of a peroxide functional group, incubation of adult schistosomes with additional iron sources did not alter activity, supporting an iron-independent mode of activatio

    Hypothesis Article Signatures of a Shadow Biosphere

    Get PDF
    Abstract Astrobiologists are aware that extraterrestrial life might differ from known life, and considerable thought has been given to possible signatures associated with weird forms of life on other planets. So far, however, very little attention has been paid to the possibility that our own planet might also host communities of weird life. If life arises readily in Earth-like conditions, as many astrobiologists contend, then it may well have formed many times on Earth itself, which raises the question whether one or more shadow biospheres have existed in the past or still exist today. In this paper, we discuss possible signatures of weird life and outline some simple strategies for seeking evidence of a shadow biosphere

    Economic Impact of Cystic Echinococcosis in Peru

    Get PDF
    Cystic echinococcosis (CE), caused by infection with the larval stage of the cestode Echinococcus granulosus, constitutes an important public health problem in Peru. Despite its high prevalence in endemic communities no studies have attempted to estimate the economic impact of CE in Peruvian society. We used official and published sources of epidemiological and economic information to estimate direct and indirect costs associated with livestock production losses and human disease. We also used disability adjusted life years (DALYs) which is an overall measure of disease burden, expressed as number of years lost due to ill-health, disability or early death due to CE. We found that the total estimated cost of human CE in Peru was U.S.2,420,348peryear.TotalestimatedlivestockassociatedcostsduetoCErangedfromU.S.2,420,348 per year. Total estimated livestock-associated costs due to CE ranged from U.S.196,681 to U.S.$3,846,754. An estimated 1,139 DALYs were also lost due to surgical cases of CE which is comparable to DALY losses from Amebiasis or Malaria in Peru. This conservative assessment found significant economic losses caused by this CE in Peruvian society. The findings of this study are important as these data can serve to prioritize those areas that may need to be targeted in a control program

    NEAs: Phase Angle Dependence of Asteroid Class and Diameter from Observational Studies

    Get PDF
    We will discuss the results of a planned observation campaign of Near Earth Asteroids (NEAs), 1999 CU3, 2002 GM2, 2002 FG7, and 3691 Bede with instruments on the United Kingdom Infrared Telescope (UKIRT) from 15-Mar-2015 to 28-April 2015 UT. We will study the phase-angle dependence of the reflectance and thermal emission spectra. Recent publications reveal that the assignment of the asteroid class from visible and near-IR spectroscopy can change with phase angle for NEAs with silicate-bearing minerals on their surfaces (S-class asteroids) (Thomas et al. 2014, Icarus 228, 217; Sanchez et al. 2012 Icarus 220, 36). Only three of the larger NEAs have been measured at a dozen phase angles and the trends are not all the same, so there is not yet enough information to create a phase-angle correction. Also, the phase angle effect is not characterized well for the thermal emission including determination of the albedo and the thermal emission. The few NEAs were selected for our study amongst many possible targets based on being able to observe them through a wide range of phase angles, ranging from less than about 10 degrees to greater than 45 degrees over the constrained date range. The orbits of NEAs often generate short observing windows at phase angles higher than 45 deg (i.e., whizzing by Earth and/or close to dawn or dusk). Ultimately, lowering the uncertainty of the translation of asteroid class to meteorite analog and of albedo and size determinations are amongst our science goals. On a few specific nights, we plan to observe the 0.75-2.5 micron spectra with IRTF+SpeX for comparison with UKIRT data including 5-20 micron with UKIRT+UIST/Michelle to determine as best as possible the albedos. To ensure correct phasing of spectroscopic data, we augment with TRAPPIST-telescope light curves and R-band guider image data. Our observations will contribute to understanding single epoch mid-IR and near-IR measurements to obtain albedo, size and IR beaming parameters (the outcomes of thermal models) and asteroid spectral class

    What Stimulates Researchers to Make Their Research Usable? Towards an Openness Approach

    Get PDF
    Ambiguity surrounding the effect of external engagement on academic research has raised questions about what motivates researchers to collaborate with third parties. We argue that what matters for society is research that can be absorbed by users. We define openness as a willingness by researchers to make research more usable by external partners by responding to external influences in their own research practices. We ask what kinds of characteristics define those researchers who are more open to creating usable knowledge. Our empirical study analyses a sample of 1583 researchers working at the Spanish Council for Scientific Research (CSIC). Results demonstrate that it is personal factors (academic identity and past experience) that determine which researchers have open behaviours. The paper concludes that policies to encourage external engagement should focus on experiences which legitimate and validate knowledge produced through user encounters, both at the academic formation career stage as well as through providing ongoing opportunities to engage with third parties.The data used for this study comes from the IMPACTO project funded by the Spanish Council for Scientific Research - CSIC (Ref. 200410E639). The work also benefited from a mobility grant awarded by Eu-Spri Forum to Julia Olmos Penuela & Paul Benneworth for her visiting research to the Center of Higher Education Policy Studies. Finally, Julia Olmos Penuela also benefited from a post-doctoral grant funded by the Generalitat Valenciana (APOSTD-2014-A-006).Olmos-Peñuela, J.; Benneworth, P.; Castro-Martínez, E. (2015). What Stimulates Researchers to Make Their Research Usable? Towards an Openness Approach. Minerva. 53(4):381-410. https://doi.org/10.1007/s11024-015-9283-4S381410534Abreu, Maria, Vadim Grinevich, Alan Hughes, and Michael Kitson. 2009. Knowledge exchange between academics and the business, public and third sectors. Cambridge: Centre for Business Research and UK-IRC.Aghion, Philippe, Mathias Dewatripont, and Jeremy C. Stein. 2008. Academic freedom, private-sector focus, and the process of innovation. RAND Journal of Economics 39: 617–635.Ajzen, Icek. 2001. Nature and operation of attitudes. Annual Review of Psychology 52(1): 27–58.Alrøe, Hugo Fjelsted, and Erik Steen Kristensen. 2002. Towards a systemic research methodology in agriculture: Rethinking the role of values in science. Agriculture and Human Values 19(1): 3–23.Audretsch, David B., Werner Bönte, and Stefan Krabel. 2010. Why do scientists in public research institutions cooperate with private firms. In DRUID Working Paper, 10–27.Baldini, Nicola, Rosa Grimaldi, and Maurizio Sobrero. 2007. To patent or not to patent? A survey of Italian inventors on motivations, incentives, and obstacles to university patenting. Scientometrics 70(2): 333–354.Bandura, Albert. 1977. Social learning theory. Englewood Cliffs, NJ: Prentice-Hall.Barnett, R. 2009. Knowing and becoming in the higher education curriculum. Studies in Higher Education 34(4): 429–440.Becher, Tony. 1994. The significance of disciplinary differences. Studies in Higher Education 19(2): 151–161.Becher, Tony, and Paul Trowler. 2001. Academic tribes and territories: Intellectual enquiry and the culture of disciplines. McGraw-Hill International.Bekkers, Rudi, and Isabel Maria Bodas Freitas. 2008. Analysing knowledge transfer channels between universities and industry: To what degree do sectors also matter? Research Policy 37(10): 1837–1853.Belderbos, René, Martin Carree, Bert Diederen, Boris Lokshin, and Reinhilde Veugelers. 2004. Heterogeneity in R&D cooperation strategies. International Journal of Industrial Organization 22(8): 1237–1263.Benner, Mats, and Ulf Sandström. 2000. Institutionalizing the triple helix: Research funding and norms in the academic system. Research Policy 29(2): 291–301.Bercovitz, Janet, and Maryann Feldman. 2008. Academic entrepreneurs: Organizational change at the individual level. Organization Science 19(1): 69–89.Berman, Elizabeth Popp. 2011. Creating the market university: How academic science became an economic engine. Princeton University Press.Bleiklie, Ivar, and Roar Høstaker. 2004. Modernizing research training-education and science policy between profession, discipline and academic institution. Higher Education Policy 17(2): 221–236.Bozeman, Barry, Daniel Fay, and Catherine P. Slade. 2013. Research collaboration in universities and academic entrepreneurship: The-state-of-the-art. The Journal of Technology Transfer 38(1): 1–67.Collini, Stefan. 2009. Impact on humanities: Researchers must take a stand now or be judged and rewarded as salesmen. The Times Literary Supplement 5563: 18–19.D’Este, Pablo, and Markus Perkmann. 2011. Why do academics engage with industry? The entrepreneurial university and individual motivations. The Journal of Technology Transfer 36(3): 316–339.D’Este, Pablo, Oscar Llopis, and Alfredo Yegros. 2013. Conducting pro-social research: Cognitive diversity, research excellence and awareness about the social impact of research: INGENIO (CSIC-UPV) Working Paper Series.Deem, Rosemary, and Lisa Lucas. 2007. Research and teaching cultures in two contrasting UK policy contexts: Academic life in education departments in five English and Scottish universities. Higher Education 54(1): 115–133.DiMaggio, Paul J., and Walter W. Powell. 1983. The iron cage revisited: Institutional isomorphism and collective rationality in organizational fields. American Sociological Review 48(2): 147–160.Downing, David B. 2005. The knowledge contract: Politics and paradigms in the academic workplace. Lincoln: Nebraska University of Nebraska Press.Donovan, Claire. 2007. The qualitative future of research evaluation. Science and Public Policy 34(8): 585–597.Durning, Bridget. 2004. Planning academics and planning practitioners: Two tribes or a community of practice? Planning Practice and Research 19(4): 435–446.Edquist, Charles. 1997. System of innovation approaches: Their emergence and characteristics. In Systems of innovation: Technologies, institutions and organizations, ed. C. Edquist, 1–35. London: Pinter.Etzkowitz, Henry, and Loet Leydesdorff. 2000. The dynamics of innovation: from National Systems and “Mode 2” to a Triple Helix of university–industry–government relations. Research Policy 29(2): 109–123.Fromhold-Eisebith, Martina, Claudia Werker, and Marcel Vojnic. 2014. Tracing the social dimension in innovation networks. In The social dynamics of innovation networks, eds. Roel Rutten, Paul Benneworth, Frans Boekema, and Dessy Irawati. London: Routledge (in press).Geuna, Aldo, and Alessandro Muscio. 2009. The governance of university knowledge transfer: A critical review of the literature. Minerva 47(1): 93–114.Gibbons, Michael, Camille Limoges, Helga Nowotny, Simon Schwartzman, Peter Scott, and Martin Trow. 1994. The new production of knowledge: The dynamics of science and research in contemporary societies. London: Sage.Gläser, Jochen. 2012. How does Governance change research content? On the possibility of a sociological middle-range theory linking science policy studies to the sociology of scientific knowledge. Technical University Berlin. Technology Studies Working Papers. http://www.ts.tu-berlin.de/fileadmin/fg226/TUTS/TUTS-WP-1-2012.pdf . Accessed 16 Feb 2015.Goethner, Maximilian, Martin Obschonka, Rainer K. Silbereisen, and Uwe Cantner. 2012. Scientists’ transition to academic entrepreneurship: Economic and psychological determinants. Journal of Economic Psychology 33(3): 628–641.Gulbrandsen, Magnus, and Jens-Christian Smeby. 2005. Industry funding and university professors’ research performance. Research Policy 34(6): 932–950.Haeussler, Carolin, and Jeannette Colyvas. 2011. Breaking the ivory tower: Academic entrepreneurship in the life sciences in UK and Germany. Research Policy 40(1): 41–54.Hessels, Laurens K., Harro van Lente, John Grin, and Ruud E.H.M. Smits. 2011. Changing struggles for relevance in eight fields of natural science. Industry and Higher Education 25(5): 347–357.Hessels, Laurens K., and Harro Van Lente. 2008. Re-thinking new knowledge production: A literature review and a research agenda. Research Policy 37(4): 740–760.Hoye, Kate, and Fred Pries. 2009. ‘Repeat commercializers’, the ‘habitual entrepreneurs’ of university–industry technology transfer. Technovation 29(10): 682–689.Jacobson, Nora, Dale Butterill, and Paula Goering. 2004. Organizational factors that influence university-based researchers’ engagement in knowledge transfer activities. Science Communication 25(3): 246–259.Jain, Sanjay, Gerard George, and Mark Maltarich. 2009. Academics or entrepreneurs? Investigating role identity modification of university scientists involved in commercialization activity. Research Policy 38(6): 922–935.Jasanoff, Sheila, and Sang-Hyun Kim. 2013. Sociotechnical imaginaries and national energy policies. Science as Culture 22(2): 189–196.Jensen, Pablo. 2011. A statistical picture of popularization activities and their evolutions in France. Public Understanding of Science 20(1): 26–36.Kitcher, Philip. 2001. Science, truth, and democracy. Oxford: Oxford University Press.Knorr-Cetina, Karin. 1981. The manufacture of knowledge: An essay on the constructivist and contextual nature of science. Oxford: Pergamon Press.Kronenberg, Kristin, and Marjolein Caniëls. 2014. Professional proximity in research collaborations. In The social dynamics of innovation networks, eds. Roel Rutten, Paul Benneworth, Frans Boekema, and Dessy Irawati. London: Routledge (in press).Krueger, Rob, and David Gibbs. 2010. Competitive global city regions and sustainable development’: An interpretive institutionalist account in the South East of England. Environment and planning A 42: 821–837.Lam, Alice. 2011. What motivates academic scientists to engage in research commercialization: ‘Gold’, ‘ribbon’ or ‘puzzle’? Research Policy 40(10): 1354–1368.Landry, Réjean, Malek Saïhi, Nabil Amara, and Mathieu Ouimet. 2010. Evidence on how academics manage their portfolio of knowledge transfer activities. Research Policy 39(10): 1387–1403.Lee, Alison, and David Boud. 2003. Writing groups, change and academic identity: Research development as local practice. Studies in Higher Education 28(2): 187–200.Lee, Yong S. 1996. ‘Technology transfer’ and the research university: A search for the boundaries of university–industry collaboration. Research Policy 25(6): 843–863.Lee, Yong S. 2000. The sustainability of university–industry research collaboration: An empirical assessment. The Journal of Technology Transfer 25(2): 111–133.Leisyte, Liudvika, Jürgen Enders, and Harry De Boer. 2008. The freedom to set research agendas—illusion and reality of the research units in the Dutch Universities. Higher Education Policy 21(3): 377–391.Louis, Karen Seashore, David Blumenthal, Michael E. Gluck, and Michael A. Stoto. 1989. Entrepreneurs in academe: An exploration of behaviors among life scientists. Administrative Science Quarterly 34(1): 110–131.Lowe, Philip, Jeremy Phillipson, and Katy Wilkinson. 2013. Why social scientists should engage with natural scientists. Contemporary Social Science 8(3): 207–222.Martín-Sempere, María José, Belén Garzón-García, and Jesús Rey-Rocha. 2008. Scientists’ motivation to communicate science and technology to the public: Surveying participants at the Madrid Science Fair. Public Understanding of Science 17(3): 349–367.Martin, Ben. 2003. The changing social contract for science and the evolution of the university. In Science and innovation: Rethinking the rationales for funding and governance, eds. A. Geuna, A.J. Salter, and W.E. Steinmueller, 7–29. Cheltenhan: Edward Elgar.Merton, Robert K. 1973. The sociology of science: Theoretical and empirical investigations. Chicago: University of Chicago Press.Miller, Thaddeus R., and Mark W. Neff. 2013. De-facto science policy in the making: how scientists shape science policy and why it matters (or, why STS and STP scholars should socialize). Minerva 51(3): 295–315.Muthén, Bengt O. 1998–2004. Mplus Technical Appendices. Muthén & Muthén. Los Angeles, CA.: Muthén & Muthén.Nedeva, Maria. 2013. Between the global and the national: Organising European science. Research Policy 42(1): 220–230.Neff, Mark William. 2014. Research prioritization and the potential pitfall of path dependencies in coral reef science. Minerva 52(2): 213–235.Nelson, Richard R. 2001. Observations on the post-Bayh-Dole rise of patenting at American universities. The Journal of Technology Transfer 26(1): 13–19.Nowotny, Helga, Peter Scott, and Michael Gibbons. 2001. Re-thinking science: Knowledge and the public in an age of uncertainty. Cambridge: Polity Press.Olmos-Peñuela, Julia, Paul Benneworth, and Elena Castro-Martínez. 2014a. Are ‘STEM from Mars and SSH from Venus’? Challenging disciplinary stereotypes of research’s social value. Science and Public Policy 41: 384–400.Olmos-Peñuela, Julia, Elena Castro-Martínez, and Manuel Fernández-Esquinas. 2014b. Diferencias entre áreas científicas en las prácticas de divulgación de la investigación: un estudio empírico en el CSIC. Revista Española de Documentación Científica. doi: 10.3989/redc.2014.2.1096 .Ouimet, Mathieu, Nabil Amara, Réjean Landry, and John Lavis. 2007. Direct interactions medical school faculty members have with professionals and managers working in public and private sector organizations: A cross-sectional study. Scientometrics 72(2): 307–323.Perkmann, Markus, Valentina Tartari, Maureen McKelvey, Erkko Autio, Anders Brostrom, Pablo D’Este, Riccardo Fini, et al. 2013. Academic engagement and commercialisation: A review of the literature on university-industry relations. Research Policy 42(2): 423–442.Philpott, Kevin, Lawrence Dooley, Caroline O’Reilly, and Gary Lupton. 2011. The entrepreneurial university: Examining the underlying academic tensions. Technovation 31(4): 161–170.Rutten, Roel, and Frans Boekema. 2012. From learning region to learning in a socio-spatial context. Regional Studies 46(8): 981–992.Sarewitz, Daniel, and Roger A. Pielke. 2007. The neglected heart of science policy: reconciling supply of and demand for science. Environmental Science & Policy 10(1): 5–16.Sauermann, Henry, and Paula Stephan. 2013. Conflicting logics? A multidimensional view of industrial and academic science. Organization Science 24(3): 889–909.Schein, Edgar H. 1985. Organizational culture and leadership: A dynamic view. San Francisco, CA: Jossey-Bass.Shane, Scott. 2000. Prior knowledge and the discovery of entrepreneurial opportunities. Organization Science 11(4): 448–469.Spaapen, Jack, and Leonie van Drooge. 2011. Introducing ‘productive interactions’ in social impact assessment. Research Evaluation 20(3): 211–218.Stokes, Donald E. 1997. Pasteur’s quadrant: Basic science and technological innovation. Washington, DC: Brookings Institution Press.Tartari, Valentina, and Stefano Breschi. 2012. Set them free: scientists’ evaluations of the benefits and costs of university–industry research collaboration. Industrial and Corporate Change 21(5): 1117–1147.Tinker, Tony, and Rob Gray. 2003. Beyond a critique of pure reason: From policy to politics to praxis in environmental and social research. Accounting, Auditing & Accountability Journal 16(5): 727–761.van Rijnsoever, Frank J., Laurens K. Hessels, and Rens L.J. Vandeberg. 2008. A resource-based view on the interactions of university researchers. Research Policy 37(8): 1255–1266.Venkataraman, Sankaran. 1997. The distinctive domain of entrepreneurship research: An editor’s perspective. Advances in Entrepreneurship, Firm Emergence, and Growth 3: 119–138.Verspagen, Bart. 2006. University research, intellectual property rights and European innovation systems. Journal of Economic Surveys 20(4): 607–632.Villanueva-Felez, Africa, Jordi Molas-Gallart, and Alejandro Escribá-Esteve. 2013. Measuring personal networks and their relationship with scientific production. Minerva 51(4): 465–483.Watermeyer, Richard. 2015. Lost in the ‘third space’: the impact of public engagement in higher education on academic identity, research practice and career progression. European Journal of Higher Education (online first, doi: 10.1080/21568235.2015.1044546 ).Weingart, Peter. 2009. Editorial for Issue 47/3. Minerva 47(3): 237–239.Ziman, John. 1996. ‘Postacademic science’: Constructing knowledge with networks and norms. Science Studies 1: 67–80.Zomer, Arend H., Ben W.A. Jongbloed, and Jürgen Enders. 2010. Do spin-offs make the academics’ heads spin? The impacts of spin-off companies on their parent research organisation. Minerva 48(3): 331–353

    Development of Atmospheric Tracer Methods To Measure Methane Emissions from Natural Gas Facilities and Urban Areas

    Full text link
    A new, integrated methodology to locate and measure methane emissions from natural gas systems has been developed. Atmospheric methane sources are identified by elevated ambient CH4 concentrations measured with a mobile laser-based methane analyzer. The total methane emission rate from a source is obtained by simulating the source with a sulfur hexafluoride (SF6) tracer gas release and by measuring methane and tracer concentrations along downwind sampling paths using mobile, real-time analyzers. Combustion sources of methane are distinguished from noncombustion sources by concurrent ambient carbon dioxide measurements. Three variations on the tracer ratio method are described for application to (1) small underground vaults, (2) aboveground natural gas facilities, and (3) diffuse methane emissions from an entire town. Results from controlled releases and from replicate tests demonstrate that the tracer ratio approach can yield total emission rates to within approximately ±15%. The estimated accuracy of emission estimates for urban areas with a variety of diffuse emissions is ±50%. © 1995, American Chemical Society. All rights reserved

    Mapping genomic loci implicates genes and synaptic biology in schizophrenia

    Get PDF
    Schizophrenia has a heritability of 60-80%1, much of which is attributable to common risk alleles. Here, in a two-stage genome-wide association study of up to 76,755 individuals with schizophrenia and 243,649 control individuals, we report common variant associations at 287 distinct genomic loci. Associations were concentrated in genes that are expressed in excitatory and inhibitory neurons of the central nervous system, but not in other tissues or cell types. Using fine-mapping and functional genomic data, we identify 120 genes (106 protein-coding) that are likely to underpin associations at some of these loci, including 16 genes with credible causal non-synonymous or untranslated region variation. We also implicate fundamental processes related to neuronal function, including synaptic organization, differentiation and transmission. Fine-mapped candidates were enriched for genes associated with rare disruptive coding variants in people with schizophrenia, including the glutamate receptor subunit GRIN2A and transcription factor SP4, and were also enriched for genes implicated by such variants in neurodevelopmental disorders. We identify biological processes relevant to schizophrenia pathophysiology; show convergence of common and rare variant associations in schizophrenia and neurodevelopmental disorders; and provide a resource of prioritized genes and variants to advance mechanistic studies

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    The Sample Analysis at Mars Investigation and Instrument Suite

    Full text link
    corecore