9 research outputs found

    A computational model of the early stages of acentriolar meiotic spindle assembly.

    Get PDF
    The mitotic spindle is an ensemble of microtubules responsible for the repartition of the chromosomal content between the two daughter cells during division. In metazoans, spindle assembly is a gradual process involving dynamic microtubules and recruitment of numerous associated proteins and motors. During mitosis, centrosomes organize and nucleate the majority of spindle microtubules. In contrast, oocytes lack canonical centrosomes but are still able to form bipolar spindles, starting from an initial ball that self-organizes in several hours. Interfering with early steps of meiotic spindle assembly can lead to erroneous chromosome segregation. Although not fully elucidated, this process is known to rely on antagonistic activities of plus end- and minus end-directed motors. We developed a model of early meiotic spindle assembly in mouse oocytes, including key factors such as microtubule dynamics and chromosome movement. We explored how the balance between plus end- and minus end-directed motors, as well as the influence of microtubule nucleation, impacts spindle morphology. In a refined model, we added spatial regulation of microtubule stability and minus-end clustering. We could reproduce the features of early stages of spindle assembly from 12 different experimental perturbations and predict eight additional perturbations. With its ability to characterize and predict chromosome individualization, this model can help deepen our understanding of spindle assembly

    Importance de l’architecture des microtubules et de l'actine pour l'alignement des chromosomes dans l'ovocyte de souris

    No full text
    Meiosis produces male and female haploid gametes. Female meiosis is highly prone to chromosome segregation errors. Indeed, at least 10 % of human pregnancies produce aneuploid embryos, the errors leading to aneuploidy almost always occurring in the oocyte. Understanding the origin of these errors is therefore a major issue. During my PhD, I studied chromosome alignment and segregation in mouse oocytes from two different angles:1) In eukaryotes, the structure orchestrating chromosome alignment and segregation is the microtubule spindle. Whereas mitotic spindles assemble from two centrosomes that are major microtubule organizing centers (MTOCs) containing centrioles, meiotic spindles in oocytes lack centrioles. Thus, oocytes use alternative ways to assemble and position their spindle. In mouse oocytes, the spindle is not assembled by centrosomes but spindle microtubules are nucleated from multiple acentriolar MTOCs. I used the kinesin-14 HSET as a tool to shift meiotic spindle assembly towards a mitotic mode. This induces severe chromosome misalignment. Thus, the unique mechanism of meiotic spindle assembly is essential to prevent chromosome misalignment and production of aneuploidy gametes.2) In mitosis, centrosomes nucleate astral microtubules. Oocytes lack astral microtubules and thus meiotic spindle positioning depends only on F-actin. In particular, it relies on the nucleation of a cortical actin thickening leading to a decrease in cortical tension. We used two different tools that nucleate de novo an actin thickening to artificially decrease cortical tension in mouse oocytes, creating extra-soft oocytes. Chromosome alignment is severely impaired in these extra-soft oocytes. It relies on myosin II deregulation since decreasing myosin II activity in extra-soft oocytes rescues chromosome alignment. Aberrant low cortical tension could thus generate aneuploidy in oocytes, contributing to the very high aneuploidy rate measured in female meiosis.La mĂ©iose produit les gamĂštes haploĂŻdes mĂąles et femelles. Chez la femme, la mĂ©iose est fortement sujette aux erreurs de sĂ©grĂ©gation des chromosomes. En effet, au moins 10% des grossesses humaines produisent des embryons aneuploĂŻdes suite Ă  des dĂ©fauts de sĂ©paration des chromosomes qui ont presque toujours lieu dans l’ovocyte. Comprendre l’origine de ces dĂ©fauts est donc un enjeu sociĂ©tal majeur. Durant ma thĂšse, j’ai Ă©tudiĂ© l’alignement et la sĂ©grĂ©gation des chromosomes dans l’ovocyte de souris sous deux angles diffĂ©rents :1) Chez les eucaryotes, le fuseau de microtubules est la structure qui gouverne l’alignement puis la sĂ©paration des chromosomes. En mitose, le fuseau est assemblĂ© par deux centrosomes contenant des centrioles, constituant les centres organisateurs de microtubules majeurs (MTOCs). Au contraire, les ovocytes sont dĂ©pourvus de centrioles, imposant un mode de formation et de positionnement du fuseau mĂ©iotique atypique. J’ai utilisĂ© la kinesin-14 HSET comme un outil pour faire passer l’organisation du fuseau ovocytaire d’un mode mĂ©iotique Ă  un mode mitotique, ce qui induit des dĂ©fauts d’alignement des chromosomes. Le mĂ©canisme unique d’assemblage du fuseau mĂ©iotique est donc essentiel pour empĂȘcher les dĂ©fauts d’alignement des chromosomes et la production de gamĂštes aneuploĂŻdes.2) En mitose, les centrosomes nuclĂ©ent aussi les microtubules astraux qui permettent de positionner le fuseau dans la cellule. Les ovocytes Ă©tant dĂ©pourvus de microtubules astraux, le positionnement de leur fuseau dĂ©pend uniquement de l’actine. En particulier, cela repose sur un Ă©paississement cortical d’actine qui ramollit le cortex en diminuant la tension corticale. Nous avons utilisĂ© deux outils diffĂ©rents qui diminuent artificiellement la tension corticale dans les ovocytes de souris. L'alignement des chromosomes est sĂ©vĂšrement altĂ©rĂ© dans ces ovocytes extra-mous du fait de dĂ©rĂ©gulations de la myosine II. En effet, une diminution de l'activitĂ© de la myosine II dans les ovocytes extra-mous restore l'alignement des chromosomes. Des dĂ©rĂ©gulations de la tension corticale pourraient ainsi gĂ©nĂ©rer de l’aneuploĂŻdie, contribuant au taux Ă©levĂ© d'aneuploĂŻdie dĂ©jĂ  observĂ© dans les gamĂštes femelles

    Importance of microtubule and F-actin architecture for proper chromosome alignment in mouse oocyte

    No full text
    La mĂ©iose produit les gamĂštes haploĂŻdes mĂąles et femelles. Chez la femme, la mĂ©iose est fortement sujette aux erreurs de sĂ©grĂ©gation des chromosomes. En effet, au moins 10% des grossesses humaines produisent des embryons aneuploĂŻdes suite Ă  des dĂ©fauts de sĂ©paration des chromosomes qui ont presque toujours lieu dans l’ovocyte. Comprendre l’origine de ces dĂ©fauts est donc un enjeu sociĂ©tal majeur. Durant ma thĂšse, j’ai Ă©tudiĂ© l’alignement et la sĂ©grĂ©gation des chromosomes dans l’ovocyte de souris sous deux angles diffĂ©rents :1) Chez les eucaryotes, le fuseau de microtubules est la structure qui gouverne l’alignement puis la sĂ©paration des chromosomes. En mitose, le fuseau est assemblĂ© par deux centrosomes contenant des centrioles, constituant les centres organisateurs de microtubules majeurs (MTOCs). Au contraire, les ovocytes sont dĂ©pourvus de centrioles, imposant un mode de formation et de positionnement du fuseau mĂ©iotique atypique. J’ai utilisĂ© la kinesin-14 HSET comme un outil pour faire passer l’organisation du fuseau ovocytaire d’un mode mĂ©iotique Ă  un mode mitotique, ce qui induit des dĂ©fauts d’alignement des chromosomes. Le mĂ©canisme unique d’assemblage du fuseau mĂ©iotique est donc essentiel pour empĂȘcher les dĂ©fauts d’alignement des chromosomes et la production de gamĂštes aneuploĂŻdes.2) En mitose, les centrosomes nuclĂ©ent aussi les microtubules astraux qui permettent de positionner le fuseau dans la cellule. Les ovocytes Ă©tant dĂ©pourvus de microtubules astraux, le positionnement de leur fuseau dĂ©pend uniquement de l’actine. En particulier, cela repose sur un Ă©paississement cortical d’actine qui ramollit le cortex en diminuant la tension corticale. Nous avons utilisĂ© deux outils diffĂ©rents qui diminuent artificiellement la tension corticale dans les ovocytes de souris. L'alignement des chromosomes est sĂ©vĂšrement altĂ©rĂ© dans ces ovocytes extra-mous du fait de dĂ©rĂ©gulations de la myosine II. En effet, une diminution de l'activitĂ© de la myosine II dans les ovocytes extra-mous restore l'alignement des chromosomes. Des dĂ©rĂ©gulations de la tension corticale pourraient ainsi gĂ©nĂ©rer de l’aneuploĂŻdie, contribuant au taux Ă©levĂ© d'aneuploĂŻdie dĂ©jĂ  observĂ© dans les gamĂštes femelles.Meiosis produces male and female haploid gametes. Female meiosis is highly prone to chromosome segregation errors. Indeed, at least 10 % of human pregnancies produce aneuploid embryos, the errors leading to aneuploidy almost always occurring in the oocyte. Understanding the origin of these errors is therefore a major issue. During my PhD, I studied chromosome alignment and segregation in mouse oocytes from two different angles:1) In eukaryotes, the structure orchestrating chromosome alignment and segregation is the microtubule spindle. Whereas mitotic spindles assemble from two centrosomes that are major microtubule organizing centers (MTOCs) containing centrioles, meiotic spindles in oocytes lack centrioles. Thus, oocytes use alternative ways to assemble and position their spindle. In mouse oocytes, the spindle is not assembled by centrosomes but spindle microtubules are nucleated from multiple acentriolar MTOCs. I used the kinesin-14 HSET as a tool to shift meiotic spindle assembly towards a mitotic mode. This induces severe chromosome misalignment. Thus, the unique mechanism of meiotic spindle assembly is essential to prevent chromosome misalignment and production of aneuploidy gametes.2) In mitosis, centrosomes nucleate astral microtubules. Oocytes lack astral microtubules and thus meiotic spindle positioning depends only on F-actin. In particular, it relies on the nucleation of a cortical actin thickening leading to a decrease in cortical tension. We used two different tools that nucleate de novo an actin thickening to artificially decrease cortical tension in mouse oocytes, creating extra-soft oocytes. Chromosome alignment is severely impaired in these extra-soft oocytes. It relies on myosin II deregulation since decreasing myosin II activity in extra-soft oocytes rescues chromosome alignment. Aberrant low cortical tension could thus generate aneuploidy in oocytes, contributing to the very high aneuploidy rate measured in female meiosis

    The impact of space and time on the functional output of the nucleus

    No full text
    Paru aussi en chapitre d'ouvrage dans The Nucleus, 2ne ed. 2021International audienceOver the past two decades, it has become clear that the multi-scale spatial and temporal organization of the genome has important implications for nuclear function. This chapter centers on insights gained from recent advances in light microscopy on our understanding of transcription. Particular focus is given to the genomic scales where most functional interactions occur, namely kb-Mb. We discuss the relevant spatial and temporal scales that shape nuclear order and their consequences on regulatory components and function. The emerging picture is that spatiotemporal constraints increase the complexity in transcriptional regulation. This brings new challenges to the fore, such as uncertainty about how information travels from factors through the genome and space to generate a functional output

    Meiotic spindle assembly and chromosome segregation in oocytes

    No full text
    International audienc
    corecore