110 research outputs found

    Direct forward gravure coating on unsupported web

    Get PDF
    YesThis experimental study of forward gravure coating considers the effects of operating variables on air entrainment, ribbing instabilities and the thickness of the film formed. The data show that this coating method can yield very thin films of thickness of order of 15 - 20% at most of the equivalent cell depth of a gravure roller. Air free and non ribbed stable uniform films can however only be obtained in a narrow window of operating conditions at very low substrate capillary number (CaS ~ 0.02) equivalent to substrate speeds typically less than 20m/min. The paper draws a similarity with flow features observed with smooth forward roll coating and slide coating. It is shown that the onset of ribbing and the flux distribution between the gravure roller and the substrate at the exit of the nip obey approximately the same rules as in smooth forward roll coating, whereas the onset of air entrainment actually corresponds to a low-flow limit of coatability similar to that observed in slide coating

    The effect of substrate roughness on air entrainment in dip coating

    Get PDF
    YesDynamic wetting failure was observed in the simple dip coating flow with a series of substrates, which had a rough side and a comparatively smoother side. When we compared the air entrainment speeds on both sides, we found a switch in behaviour at a critical viscosity. At viscosity lower than a critical value, the rough side entrained air at lower speeds than the smooth side. Above the critical viscosity the reverse was observed, the smooth side entraining air at lower speed than the rough side. Only substrates with significant roughness showed this behaviour. Below a critical roughness, the rough side always entrained air at lower speeds than the smooth side. These results have both fundamental and practical merits. They support the hydrodynamic theory of dynamic wetting failure and imply that one can coat viscous fluids at higher speeds than normal by roughening substrates. A mechanism and a model are presented to explain dynamic wetting failure on rough surfaces

    Classification and analyses of of coating flows

    Get PDF
    YesA classification of coating flows is presented to facilitate a fundamental approach to their study. Four categories are observed: free, metered, transfer and gravure coating flows. They are all limited by free surface(s) which make their analysis difficult. Various analytical approaches have been used and these are briefly reviewed in this paper

    Reverse roll coating with a deformable roll operating at negative gaps

    Get PDF
    YesReverse roll coating is probably the most widely used coating operation, yet its full potential has not been exploited as it is shown in this paper which considers operation with a negative gap. We demonstrate through a wide range of experimental data that such operation can yield very thin and stable films with no ribbing or cascade instabilities when low viscosity fluids are used. Typically, stable film thickness less than 5ÎŒm can be obtained at speeds up to 150 m/min when a rubber roller is used at -100 ÎŒm gap with fluids of viscosity in the range 10-200 mPa.s. These film thicknesses can be made to decrease further down to 1 or 2 microns with a judicious choice of speed ratios (applicator to metering roller) and rubber hardness. Such new findings make this simple coating method an attractive roll to roll technique for application in the newer coating technologies, such as in the production of solar cells and plastic electronics. The data obtained in this study have been underpinned by a model based on the classical lubrication theory, well developed for such flow situations. Essentially it is shown that the film thickness non dimensionalised with respect to the set negative gap is controlled through a single parameter, the elasticity number Ne which combines all the operating parameters. Of course, this flow problem has complexities, particularly at high speed ratios and at zero gap so the data obtained here can serve as a basis for more comprehensive modelling of this classical fluid mechanic problem.Films R&D Centre of Toyobo Co. Ltd., Otsu, Japan and the Thin Films Research Group of the University of Bradford, UK

    Slot Coating Minimum Film Thickness in Air and in Rarefied Helium

    Get PDF
    YesThis study assesses experimentally the role of gas viscosity in controlling the minimum film thickness in slot coating in both the slot over roll and tensioned web modes. The minimum film thickness here is defined with respect to the onset of air entrainment rather than rivulets, the reason being that rivulets are an extreme form of instabilities occurring at much higher speeds. The gas viscosity effects are simulated experimentally by encasing the coaters in a sealed gas chamber in which various gases can be admitted. An appropriate choice of two gases was used to compare performances: air at atmospheric pressure and helium at sub-ambient pressure (25mbar), which we establish has a significantly lower “thin film” viscosity than atmospheric air. A capacitance sensor was used to continuously measure the film thickness on the web, which was ramped up in speed at a fixed acceleration whilst visualizations of the film stability were recorded through a viewing port in the chamber. The data collected show clearly that by coating in rarefied helium rather that atmospheric air we can reduce the minimum film thickness or air/gas entrainment low-flow limit. We attribute this widening of the stable coating window to the enhancement of dynamic wetting that results when the thin film gas viscosity is reduced. These results have evident practical significance for slot coating, the coating method of choice in many new technological applications, but it is their fundamental merit which is new and one that should be followed with further data and theoretical underpinning
    • 

    corecore