37 research outputs found

    Open issues and trends in turbulent transport

    Get PDF

    Nonlinear evolution of the m=1 internal kink mode in the presence of magnetohydrodynamic turbulence

    Full text link
    The nonlinear evolution of the m=1 internal kink mode is studied numerically in a setting where the tokamak core plasma is surrounded by a turbulent region with low magnetic shear. As a starting point we choose configurations with three nearby q=1 surfaces where triple tearing modes (TTMs) with high poloidal mode numbers m are unstable. While the amplitudes are still small, the fast growing high-m TTMs enhance the growth of the m=1 instability. This is interpreted as a fast sawtooth trigger mechanism. The TTMs lead to a partial collapse, leaving behind a turbulent belt with q ~= 1 around the unreconnected core plasma. Although, full reconnection can occur if the core displacement grows large enough, it is shown that the turbulence may actively prevent further reconnection. This is qualitatively similar to experimentally observed partial sawtooth crashes with post-cursor oscillations due to a saturated internal kink.Comment: 14 pages, 13 figure

    The role of coherent vorticity in turbulent transport in resistive drift-wave turbulence

    Full text link
    The coherent vortex extraction method, a wavelet technique for extracting coherent vortices out of turbulent flows, is applied to simulations of resistive drift-wave turbulence in magnetized plasma (Hasegawa-Wakatani system). The aim is to retain only the essential degrees of freedom, responsible for the transport. It is shown that the radial density flux is carried by these coherent modes. In the quasi-hydrodynamic regime, coherent vortices exhibit depletion of the polarization-drift nonlinearity and vorticity strongly dominates strain, in contrast to the quasiadiabatic regime

    Fast growing double tearing modes in a tokamak plasma

    Full text link
    Configurations with nearby multiple resonant surfaces have broad spectra of linearly unstable coupled tearing modes with dominant high poloidal mode numbers m. This was recently shown for the case of multiple q = 1 resonances [Bierwage et al., Phys. Rev. Lett. 94 (6), 65001 (2005)]. In the present work, similar behavior is found for double tearing modes (DTM) on resonant surfaces with q >= 1. A detailed analysis of linear instability characteristics of DTMs with various mode numbers m is performed using numerical simulations. The mode structures and dispersion relations for linearly unstable modes are calculated. Comparisons between low- and higher-m modes are carried out, and the roles of the inter-resonance distance and of the magnetic Reynolds number S_Hp are investigated. High-m modes are found to be destabilized when the distance between the resonant surfaces is small. They dominate over low-m modes in a wide range of S_Hp, including regimes relevant for tokamak operation. These results may be readily applied to configurations with more than two resonant surfaces.Comment: 11 pages, 15 figure

    Dynamics of resistive double tearing modes with broad linear spectra

    Get PDF
    The nonlinear evolution of resistive double tearing modes (DTMs) with safety factor values q=1 and q=3 is studied in a reduced cylindrical model of a tokamak plasma. We focus on cases where the resonant surfaces are a small distance apart. Recent numerical studies have shown that in such configurations high-m modes are strongly unstable. In this paper, it is first demonstrated that linear DTM theory predicts the dominance of high-m DTMs. A semi-empirical formula for estimating the poloidal mode number of the fastest growing mode, m_peak, is obtained from the existing linear theory. Second, using nonlinear simulations, it is shown that the presence of fast growing high-m modes leads to a rapid turbulent collapse in an annular region, whereby small magnetic island structures form. Furthermore, consideration is given to the evolution of low-m modes, in particular the global m=1 internal kink, which can undergo nonlinear driving through coupling to fast growing linear high-m DTMs. Factors influencing the details of the dynamics are discussed. These results may be relevant for the understanding of the magnetohydrodynamic (MHD) activity near the minimum of q and may thus be of interest to studies concerned with stability and confinement in advanced tokamaks.Comment: 11 pages, 10 figure

    Nonlinear Dynamics of Magnetic Islands Imbedded in Small-Scale Turbulence

    Get PDF
    International audienceThe nonlinear dynamics of magnetic tearing islands imbedded in a pressure gradient driven turbulence is investigated numerically in a reduced magnetohydrodynamic model. The study reveals regimes where the linear and nonlinear phases of the tearing instability are controlled by the properties of the pressure gradient. In these regimes, the interplay between the pressure and the magnetic flux determines the dynamics of the saturated state. A secondary instability can occur and strongly modify the magnetic island dynamics by triggering a poloidal rotation. It is shown that the complex nonlinear interaction between the islands and turbulence is nonlocal and involves small scales

    Anomalous transport in Charney-Hasegawa-Mima flows

    Full text link
    Transport properties of particles evolving in a system governed by the Charney-Hasegawa-Mima equation are investigated. Transport is found to be anomalous with a non linear evolution of the second moments with time. The origin of this anomaly is traced back to the presence of chaotic jets within the flow. All characteristic transport exponents have a similar value around μ=1.75\mu=1.75, which is also the one found for simple point vortex flows in the literature, indicating some kind of universality. Moreover the law γ=μ+1\gamma=\mu+1 linking the trapping time exponent within jets to the transport exponent is confirmed and an accumulation towards zero of the spectrum of finite time Lyapunov exponent is observed. The localization of a jet is performed, and its structure is analyzed. It is clearly shown that despite a regular coarse grained picture of the jet, motion within the jet appears as chaotic but chaos is bounded on successive small scales.Comment: revised versio

    Electron Temperature Gradient Mode Transport

    Get PDF
    Anomalous electron thermal losses plays a central role in the history of the controlled fusion program being the first and most persistent form of anomalous transport across all toroidal magnetic confinement devices. In the past decade the fusion program has made analysis and simulations of electron transport a high priority with the result of a clearer understanding of the phenomenon, yet still incomplete. Electron thermal transport driven by the electron temperature gradient is examined in detail from theory, simulation and power balance studies in tokamaks with strong auxiliary heating.Physic
    corecore