Configurations with nearby multiple resonant surfaces have broad spectra of
linearly unstable coupled tearing modes with dominant high poloidal mode
numbers m. This was recently shown for the case of multiple q = 1 resonances
[Bierwage et al., Phys. Rev. Lett. 94 (6), 65001 (2005)]. In the present work,
similar behavior is found for double tearing modes (DTM) on resonant surfaces
with q >= 1. A detailed analysis of linear instability characteristics of DTMs
with various mode numbers m is performed using numerical simulations. The mode
structures and dispersion relations for linearly unstable modes are calculated.
Comparisons between low- and higher-m modes are carried out, and the roles of
the inter-resonance distance and of the magnetic Reynolds number S_Hp are
investigated. High-m modes are found to be destabilized when the distance
between the resonant surfaces is small. They dominate over low-m modes in a
wide range of S_Hp, including regimes relevant for tokamak operation. These
results may be readily applied to configurations with more than two resonant
surfaces.Comment: 11 pages, 15 figure