9 research outputs found
The Plant Diversity Sampling Design for The National Ecological Observatory Network
The National Ecological Observatory Network (NEON) is designed to facilitate an understanding of the impact of environmental change on ecological systems. Observations of plant diversity—responsive to changes in climate, disturbance, and land use, and ecologically linked to soil, biogeochemistry, and organisms—result in NEON data products that cross a range of organizational levels. Collections include samples of plant tissue to enable investigations of genetics, plot-based observations of incidence and cover of native and non-native species, observations of plant functional traits, archived vouchers of plants, and remote sensing airborne observations. Spatially integrating many ecological observations allows a description of the relationship of plant diversity to climate, land use, organisms, and substrates. Repeating the observations over decades and across the United States will iteratively improve our understanding of those relationships and allow for the testing of system-level hypotheses as well as the development of predictions of future conditions
Comparison of the enantiomers of (±)-doxanthrine, a high efficacy full dopamine D1 receptor agonist, and a reversal of enantioselectivity at D1 versus alpha2C adrenergic receptors
Parkinson’s disease is a neurodegenerative condition involving the death of dopaminergic neurons in the substantia nigra. Dopamine D1 receptor agonists are potential alternative treatments to current therapies that employ L-DOPA, a dopamine precursor. We evaluated the pharmacological profiles of the enantiomers of a novel dopamine D1 receptor full agonist, doxanthrine (DOX) at D1 and α2C adrenergic receptors. (+)-DOX displayed greater potency and intrinsic activity than (-)-DOX in porcine striatal tissue and in a heterologous D1 receptor expression system. Studies in MCF7 cells, which express an endogenous human dopamine D1-like receptor, revealed that (-)-DOX was a weak partial agonist/antagonist that reduced the functional activity of (+)-DOX and dopamine. Surprisingly, (-)-DOX had 10-fold greater potency than (+)-DOX at α2C adrenergic receptors, with an EC50 value of 4 nM. These findings demonstrate a reversed stereoselectivity for the enantiomers of DOX at D1 and α2C receptors and have implications for the therapeutic utility of doxanthrine
Recommended from our members
Molecular targets of cannabidiol in neurological disorders
Cannabis has a long history of anecdotal medicinal use
and limited licensed medicinal use. Until recently, alleged clinical effects from anecdotal reports and the use of licensed cannabinoid medicines are most likely mediated by tetrahydrocannabinol by virtue of: 1) this cannabinoid being present in the most significant quantities in these preparations; and b) the proportion:potency relationship between tetrahydrocannabinol and other plant cannabinoids derived from cannabis. However, there has recently been
considerable interest in the therapeutic potential for the plant cannabinoid, cannabidiol (CBD), in neurological disorders but the current evidence suggests that CBD does not directly interact with the endocannabinoid system except in vitro at supraphysiological concentrations. Thus, as further evidence for CBD’s beneficial
effects in neurological disease emerges, there remains an urgent need to establish the molecular targets through which it exerts its therapeutic effects. Here, we conducted a systematic search of the extant literature for original articles describing the molecular phar-
macology of CBD. We critically appraised the results for the validity of the molecular targets proposed. Thereafter, we considered whether the molecular targets of CBD identified hold therapeutic potential in relevant neurological diseases. The molecular targets identified include numerous classical ion channels, receptors, transporters, and enzymes. Some CBD effects at these targets in in vitro assays only manifest at high concentrations, which may be difficult to achieve in vivo, particularly given CBD’s relatively poor bioavailability. Moreover, several targets were asserted
through experimental designs that demonstrate only correlation with a given target rather than a causal proof. When the molecular targets of CBD that were physiologically plausible were considered for their potential for exploitation in neurological therapeu-
tics, the results were variable. In some cases, the targets identified had little or no established link to the diseases considered. In others, molecular targets of CBD were entirely consistent with those already actively exploited in relevant, clinically used, neurological treatments. Finally, CBD was found to act upon a number of targets that are linked to neurological therapeutics but that its actions were not consistent with modulation of such targets that would derive a therapeutically beneficial outcome. Overall, we find that while >65 discrete molecular targets have been reported in the literature for CBD, a relatively limited number represent
plausible targets for the drug’s action in neurological disorders when judged by the criteria we set. We conclude that CBD is very unlikely to exert effects in neurological diseases through modulation of the endocannabinoid system. Moreover, a number of other
molecular targets of CBD reported in the literature are unlikely to be of relevance owing to effects only being observed at supraphysiological concentrations. Of interest and after excluding unlikely and implausible targets, the remaining molecular targets of CBD with plausible evidence for involvement in therapeutic
effects in neurological disorders (e.g., voltage-dependent anion channel 1, G protein-coupled receptor 55, CaV3.x, etc.) are associated with either the regulation of, or responses to changes in, intracellular calcium levels. While no causal proof yet exists for CBD’s effects at these targets, they represent the most probable for such investigations and should be prioritized in further studies of CBD’s therapeutic mechanism of action