217 research outputs found
The Hot Bang state of massless fermions
In 2002, a method has been proposed by Buchholz et al. in the context of
Local Quantum Physics, to characterize states that are locally in thermodynamic
equilibrium. It could be shown for the model of massless bosons that these
states exhibit quite interesting properties. The mean phase-space density
satisfies a transport equation, and many of these states break time reversal
symmetry. Moreover, an explicit example of such a state, called the Hot Bang
state, could be found, which models the future of a temperature singularity.
However, although the general results carry over to the fermionic case easily,
the proof of existence of an analogue of the Hot Bang state is not quite that
straightforward. The proof will be given in this paper. Moreover, we will
discuss some of the mathematical subtleties which arise in the fermionic case.Comment: 17 page
Topological States on the Gold Surface
Gold surfaces host special electronic states that have been understood as a
prototype of Shockley surface states (SSs). These SSs are commonly employed to
benchmark the capability of angle-resolved photoemission spectroscopy (ARPES)
and scanning tunneling spectroscopy. We find that these Shockley SSs can be
reinterpreted as topologically derived surface states (TDSSs) of a topological
insulator (TI), a recently discovered quantum state. Based on band structure
calculations, the Z2 topological invariant can be well defined to characterize
the nontrivial features of gold that we detect by ARPES. The same TDSSs are
also recognized on surfaces of other well-known noble metals (e.g., silver,
copper, platinum, and palladium). Besides providing a new understanding of
noble metal SSs, finding topological states on late transition metals provokes
interesting questions on the role of topological effects in surface-related
processes, such as adsorption and catalysis.Comment: 21 pages, 3 figure
Dynamical locality of the free Maxwell field
We consider the non-interacting source-free Maxwell field, described both in terms of the vector potential and the field strength. Starting from the classical field theory on contractible globally hyperbolic spacetimes, we extend the classical field theory to general globally hyperbolic spacetimes in two ways to obtain a "universal" theory and a "reduced" theory. The quantum field theory in terms of the unital -algebra of the smeared quantum field is then obtained by an application of a suitable quantisation functor. We show that the universal theories fail local covariance and dynamical locality owing to the possibility of having non-trivial radicals in the classical and non-trivial centres in the quantum case. The reduced theories are both locally covariant and dynamically local. These models provide new examples relevant to the discussion of how theories should be formulated so as to describe the same physics in all spacetimes
Synthesis, functionalization and polymerization of heterocycles using frustrated Lewis Pairs, Boron, Magnesium and Zinc reagents
Modification of Pb quantum well states by the adsorption of organic molecules
he successful implementation of nanoscale materials in next generation optoelectronic devices crucially depends on our ability to functionalize and design low dimensional materials according to the desired field of application. Recently, organic adsorbates have revealed an enormous potential to alter the occupied surface band structure of tunable materials by the formation of tailored molecule-surface bonds. Here, we extend this concept of adsorption-induced surface band structure engineering to the unoccupied part of the surface band structure. This is achieved by our comprehensive investigation of the unoccupied band structure of a lead (Pb) monolayer film on the Ag(1 1 1) surface prior and after the adsorption of one monolayer of the aromatic molecule 3,4,9,10-perylene-tetracarboxylic-dianhydride (PTCDA). Using two-photon momentum microscopy, we show that the unoccupied states of the Pb/Ag(1 1 1) bilayer system are dominated by a parabolic quantum well state (QWS) in the center of the surface Brillouin zone with Pb p orbital character and a side band with almost linear dispersion showing Pb p orbital character. After the adsorption of PTCDA, the Pb side band remains completely unaffected while the signal of the Pb QWS is fully suppressed. This adsorption induced change in the unoccupied Pb band structure coincides with an interfacial charge transfer from the Pb layer into the PTCDA molecule. We propose that this charge transfer and the correspondingly vertical (partially chemical) interaction across the PTCDA/Pb interface suppresses the existence of the QWS in the Pb layer. Our results hence unveil a new possibility to orbital selectively tune and control the entire surface band structure of low dimensional systems by the adsorption of organic molecules
Modification of Pb quantum well states by the adsorption of organic molecules
The successful implementation of nanoscale materials in next generation optoelectronic devices crucially depends on our ability to functionalize and design low dimensional materials according to the desired field of application. Recently, organic adsorbates have revealed an enormous potential to alter the occupied surface band structure of tunable materials by the formation of tailored molecule-surface bonds. Here, we extend this concept of adsorption-induced surface band structure engineering to the unoccupied part of the surface band structure. This is achieved by our comprehensive investigation of the unoccupied band structure of a lead (Pb) monolayer film on the Ag(1 1 1) surface prior and after the adsorption of one monolayer of the aromatic molecule 3,4,9,10-perylene-tetracarboxylic-dianhydride (PTCDA). Using two-photon momentum microscopy, we show that the unoccupied states of the Pb/Ag(1 1 1) bilayer system are dominated by a parabolic quantum well state (QWS) in the center of the surface Brillouin zone with Pb p orbital character and a side band with almost linear dispersion showing Pb p orbital character. After the adsorption of PTCDA, the Pb side band remains completely unaffected while the signal of the Pb QWS is fully suppressed. This adsorption induced change in the unoccupied Pb band structure coincides with an interfacial charge transfer from the Pb layer into the PTCDA molecule. We propose that this charge transfer and the correspondingly vertical (partially chemical) interaction across the PTCDA/Pb interface suppresses the existence of the QWS in the Pb layer. Our results hence unveil a new possibility to orbital selectively tune and control the entire surface band structure of low dimensional systems by the adsorption of organic molecules
Signatures of an Atomic Crystal in the Band Structure of a Molecular Thin Film
Transport phenomena in molecular materials are intrinsically linked to the
orbital character and the degree of localization of the valence states. Here,
we combine angle-resolved photoemission with photoemission tomography to
determine the spatial distribution of all molecular states of the valence band
structure of a C thin film. While the two most frontier valence states
exhibit a strong band dispersion, the states at larger binding energies are
characterized by distinct emission patterns in energy and momentum space. Our
findings demonstrate the formation of an atomic crystal-like band structure in
a molecular solid with delocalized -like valence states and strongly
localized -states at larger binding energies
2D and 3D Micropatterning of Mussel-Inspired Functional Materials by Direct Laser Writing
This work addresses the critical need for multifunctional materials and substrate-independent high-precision surface modification techniques that are essential for advancing microdevices and sensing elements. To overcome existing limitations, the versatility of mussel-inspired materials (MIMs) is combined with state-of-the-art multiphoton direct laser writing (DLW) microfabrication. In this way, 2D and 3D MIM microstructures of complex designs are demonstrated with sub-micron to micron resolution and extensive post-functionalization capabilities. This study includes polydopamine (PDA), mussel-inspired linear, and dendritic polyglycerols (MI-lPG and MI-dPG), allowing their direct microstructure on the substrate of choice with the option to tailor the patterned topography and morphology in a controllable manner. The functionality potential of MIMs is demonstrated by successfully immobilizing and detecting single-stranded DNA on MIM micropattern and nanoarray surfaces. In addition, easy modification of MIM microstructure with silver nanoparticles without the need of any reducing agent is shown. The methodology developed here enables the integration of MIMs in advanced applications where precise surface functionalization is essential
- …
