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Dynamical locality of the free
Maxwell field

Christopher J. Fewster and Benjamin Lang

Abstract. The extent to which the non-interacting and source-free Max-
well field obeys the condition of dynamical locality is determined in var-
ious formulations. Starting from contractible globally hyperbolic space-
times, we extend the classical field theory to globally hyperbolic space-
times of arbitrary topology in two ways, obtaining a ‘universal’ theory
and a ‘reduced’ theory of the classical free Maxwell field and their cor-
responding quantisations. We show that the classical and the quantised
universal theory fail local covariance and dynamical locality owing to the
possibility of having non-trivial radicals in the classical presymplectic
spaces and non-trivial centres in the quantised ∗-algebras. The classical
and the quantised reduced theory are both locally covariant and dynam-
ically local, thus closing a gap in the discussion of dynamical locality and
providing new examples relevant to the question of how theories should
be formulated so as to describe the same physics in all spacetimes.

1. Introduction

The purpose of this paper is to test various formulations of the free Maxwell
field, both classical and quantised, for the property of dynamical locality.
This property was introduced recently in connection with a discussion of a
foundational problem for physics in curved spacetimes: namely, to understand
how a theory should be formulated such that its physical content is preserved
across the various spacetimes on which it is defined; i.e., so that it represents
the same physics in all spacetimes (SPASs) [23]. This touches on what is
actually meant by the physical content of a theory, which is not easy to make
mathematically precise and it is conceivable there might be more than one
satisfactory notion of SPASs, or possibly none at all.

A suitable framework to address such questions is the functorial frame-
work of locally covariant quantum field theory set up in [12]. There, a quan-
tum field theory is described as a functor between a category of curved space-
times and a category of unital (C)*-algebras. Two quantum field theories are
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equivalent if and only if there is a natural isomorphism between the func-
tors describing them. Due to the flexibility of the functorial framework, the
ideas of locally covariant quantum field theory can be easily applied to other
physical theories by a change of the target category, leading to the notion of
locally covariant (physical) theories.

In [23], the issue of SPASs was addressed as follows. Any putative notion
of SPASs can be represented by a class of locally covariant theories - those
conforming to the notion in question. One can then assert axioms for what
a good notion of SPASs should be as restrictions on such classes of theories.
In particular, suppose one has two theories F , G, in a class T , each of which
is supposed to represent the same physics in all spacetimes according to a
common notion. If there is at least one spacetime in which the theories F and
G coincide, then it seems natural to demand that they should coincide in all
spacetimes. This idea was implemented mathematically for the case in which
theory F is a subtheory of G: a class of theories T is said to have the SPASs
property if and only if whenever F,G are locally covariant theories in T and
η : F→̇G is a partial natural isomorphism (i.e., at least one of its components
is an isomorphism), then η is a natural isomorphism. It was pointed out in
[23] that the collection of all locally covariant quantum field theories does not
have the SPASs property, while the class of locally covariant theories which
are furthermore dynamically local does. It was also noted that one might wish
to consider other implementations of the underlying idea of SPASs, to which
we will return in Section 8.4.

The condition of dynamical locality requires that two notions of the
local physical content of a locally covariant theory should coincide: (a) the
kinematic description provided by the functor applied to local regions con-
sidered as spacetimes in their own right, and (b) the dynamical description
which singles out the elements that are invariant under changes to the metric
in the causal complement of the region. The precise definition will be recalled
in Section 5. Dynamical locality is also of interest its own right, regardless
of SPASs, because of its consequences for locally covariant theories such as
additivity, extended locality (see [43, 36] for the original notion) and a no-
go theorem concerning preferred states in locally covariant quantum field
theories [23, §6].

It is useful to summarise the current state of knowledge regarding dy-
namical locality. Klein–Gordon theory in spacetime dimension n ≥ 2, with
mass m and curvature coupling ξ, is known to be dynamically local provided
at least one of m or ξ is non-zero [24, 18]. The same is known to be true for
the extended theory of Wick polynomials for m > 0 in the two cases of min-
imal and conformal coupling in dimensions n ≥ 2 [18]; moreover, the Dirac
field in n = 4 dimensions is dynamically local for m ≥ 0 [17]. The massless
minimally coupled scalar field fails to be dynamically local in all dimensions
n ≥ 2, which can be traced to the rigid gauge symmetry φ 7→ φ+const of the
theory; as mentioned, dynamical locality is restored if either m or ξ become
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non-zero. Moreover, the free massless current is also dynamically local in di-
mensions n ≥ 3, and also in n = 2 if we restrict to the category of connected
spacetimes [24]. The inhomogeneous minimally coupled Klein–Gordon theory
has recently been studied [22]; here, the category of spacetimes is replaced
by a category of spacetimes with sources, and one modifies the definition of
the relative Cauchy evolution and the dynamical net to take account of both
metric and source perturbations. The result is that the inhomogeneous the-
ory is dynamically local for all n ≥ 2 and m ≥ 0. Thus we see that the failure
of dynamical locality is lifted as soon interactions, in the form of curvature
coupling or external sources (or, mass terms) are included. Note that, while
the curvature and mass terms break the gauge symmetry, this is not the case
for the inhomogeneous theory.1 In this paper, we intend to close a gap by
including the free (i.e. non-interacting and source-free) Maxwell field in the
discussion of dynamical locality.

In fact, the formulation of the free Maxwell field and related models has
attracted some interest recently, particularly in relation to local covariance.
Results on the initial value problem and the quantisation in [16] were gen-
eralised to differential p-form fields in [40], Hadamard states were discussed
in [21, 15] and the Reeh-Schlieder property was analysed in [13]. However,
these treatments have in common that they make some assumptions on the
topology of the underlying spacetime. Approaches which do not make such
assumptions are [14], which treats field strengths, [42], which treats the vector
potential, and [25], which discusses the Gupta-Bleuler formalism in curved
spacetimes. A consideration of electromagnetism in the spirit of Yang-Mills
gauge theories is given in the series of papers [5, 6, 4]. Moving beyond electro-
magnetism, the renormalisability of quantum Yang-Mills theories in curved
spacetimes was established in [33] and a general setting for linear quantised
gauge field theories is given in [32]. One might also mention progress in lin-
earised quantum gravity [20], which partly inspired some of the work just
discussed.

There are various reasons for this interest in free electromagnetism.
First, it is important as a model in which physical phenomena such as the
Casimir effect can be described, and as a building block in the construction of
the perturbative construction of interacting quantum field theories in curved
spacetimes [11, 34, 35]. Second, it is a theory in which the effects of a non-
trivial spacetime topology such as topological charges and their superselection
rules [44, 1] and Aharonov-Bohm like effects [42] can be discussed. Related
to this, topological effects result in a failure of electromagnetism and similar
theories to obey the axioms of locally covariant physics – as emphasised
by [42], it is locality, rather than covariance, which is lost, as the price for
incorporating observables such as those related to Gauss’ law. Finally, for our
current purposes, the known failure of dynamical locality with the massless

1There is a subtlety in [22]: not all generators of relative Cauchy evolutions correspond to
observable (gauge-invariant) fields in the m = 0 case; if one excludes such relative Cauchy
evolutions from the construction of the dynamical net, then dynamical locality fails. See
[22, Remark 7.20 & §8].
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and minimally coupled free scalar field, as a result of a rigid gauge symmetry,
evidently makes electromagnetism, as a local gauge field theory, an interesting
test case for dynamical locality.

A legitimate question is whether to use a field strength tensor [14] or a
vector potential description [16, 5, 6, 4, 42] of the free Maxwell field for the
task of investigating dynamical locality. Our basic approach, following [14],
will be to take the theory of the free Maxwell field on contractible curved
spacetimes, where a field strength tensor description coincides with a gauge
invariant vector potential description and leads to symplectic spaces and
simple unital (C)*-algebras, and to ask how it may be extended to curved
spacetimes with arbitrary topologies in a functorial way. This differs from
other, more global, approaches like [16, 5, 6, 4, 42] insofar as we are led to
our global theory (on non-contractible curved spacetimes) by local reasoning.
Such an extension was already achieved in [14] for the quantised free Maxwell
field in terms of the field strength tensor using Fredenhagen’s idea of the
universal algebra [26, 28, 27]. The classical and the quantum field theory
obtained in this way will be called ‘universal’; as the field strength and vector
potential formulations of electromagnetism coincide in contractible curved
spacetimes, their corresponding universal theories are also equivalent: this is
a generalisation of the “natural algebraic relation” described by [8] between
the Borchers-Uhlmann algebras for the field strength description and the
vector potential description of the quantum theory of the free Maxwell field
in Minkowski space.

The classical and the quantised universal F-theories (“F” is to indicate
the field strength tensor description) of the free Maxwell field do not obey
local covariance since degenerate pre-symplectic spaces and non-simple unital
(C)*-algebras arise whenever the second de Rham cohomology group of the
curved spacetime considered is non-trivial. However, they still satisfy the
time-slice axiom and the dynamical net can be constructed, thus allowing one
to test them for dynamical locality, which they will fail as well. It is therefore
of interest to know whether these desirable properties can be restored in
some way; moreover, it would also be closer to the original spirit of algebraic
quantum field theory [31, 30] to work with simple unital (C)*-algebras (and
thus with nondegenerate pre-symplectic spaces in the classical case. Hence, we
will also consider ‘reduced’ theories of the free Maxwell field which quotient
out non-trivial radicals or centres of the universal free F-theories – similar
ideas have been mentioned in [42], where it is also stated that this cannot
be done in a functorial way for the vector potential description. As we will
show, the classical and the quantised reduced free F-theory are both locally
covariant (by design) and, which is not so obvious, dynamically local.

The paper is structured as follows. We begin with some preliminary
work, collecting notions of locally covariant quantum field theory in Section
2 and recalling some exterior calculus of differential forms in Section 3. Next,
we review the classical and the quantum field theories of the free Maxwell
field, which we wish to consider, in Section 4. In Section 5, we recap the
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general construction of the dyamical net. In Section 6, we will see that the
classical and the quantised universal free F-theory obtained in Section 4 fail
local covariance and dynamical locality due to the topological reasons already
mentioned. This failure can be remedied, leading to the locally covariant
and dynamically local, classical and quantised reduced F-theory of the free
Maxwell field, which will be the topic of Section 7. In Section 8, we discuss
the status of dynamical locality, the categorical structure underlying some of
our constructions, and the relation of our present work to the discussions of
SPASs in [23, 24].

2. Locally covariant physics

We briefly review the functorial framework of algebraic quantum field theory
in curved spacetimes collected in [12], in which a quantum field theory is
described as a functor between a category of spacetimes and a category of
unital (C)*-algebras, and its application to other physical systems.

2.1. Spacetimes and physical systems

The category of spacetimes, Loc, has as its objects all oriented globally hyper-
bolic spacetimes M = (M, g, o, t) of dimension 4 and signature (+,−,−,−),
where o is the orientation and t is the time-orientation. A Loc-morphism
ψ : M → N is an isometric smooth embedding which preserves the orien-
tation and the time-orientation and whose image ψ (M) is causally convex2

in N (preservation of the causal structure). For (algebraic) quantum field
theory, the following two categories are of importance:

• C*Alg
m
1 : Objects are unital C∗-algebras; morphisms are unital ∗-mono-

morphisms.
• *Alg

m
1 : Objects are unital ∗-algebras (over C); morphisms are unital

∗-monomorphisms.

Following standard notation, we denote the set of morphisms between ob-
jects A,B of *Alg

m
1 by *Alg

m
1 (A,B), and similarly for the other categories

encountered.
A locally covariant quantum field theory is a functor F : Loc → C*Alg

m
1

or F : Loc → *Alg
m
1 . This means that to each spacetime M ∈ Loc the

theory assigns an algebra FM (in C*Alg
m
1 or *Alg

m
1 as appropriate) and,

importantly, to each embedding of spacetimes ψ : M → N in Loc, the theory
assigns a morphism Fψ : FM → FN ; in the current algebraic setting, Fψ is
a faithful unital ∗-homomorphism. The functorial axioms specify the action of
F on identity morphisms and composite morphisms, namely, F idM = idFM

and F (ψ ◦ϕ) = Fψ ◦Fϕ. Note that it is important to insist on the injectivity
of the unital *-homomorphisms in order to fully implement the principle of
local covariance.

2ψ (M) is causally convex in N if and only if each causal smooth curve in N with endpoints
in ψ (M) is entirely contained in ψ (M).
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Due to the flexibility of the functorial framework, we can consider other
physical situations by changing the target category. The physical systems un-
der consideration shall form the objects of a category Phys, so that a mor-
phisms of Phys represents an inclusion of one physical system as a physical
subsystem of another. The category ofPhys is subjected to further conditions
[23, §3.1]: to be specific it is required that all Phys-morphisms are monic and
that Phys has equalisers, intersections, unions3 and an initial object, which
represents the trivial physical theory. A functor F : Loc → Phys is called a
locally covariant (physical) theory. We will consider just a few candidates for
Phys in this paper, namely, *Alg

m
1 and

• pSymplm
K
: Objects are (complexified if K = C) pre-symplectic spaces,

(V, ω, C), where V is a K-vector space, C a C-involution on V (which
is omitted or set to be the identity on V if K = R)4 and ω a (possibly
degenerate) skew-symmetric K-bilinear form satisfying ω ◦ (C × C) =
◦ ω; the morphisms are symplectic C-monomorphisms, i.e.,

f ∈ pSymplm
K
((V, ω, C) , (V ′, ω′, C ′))

is an injective K-linear map f : V → V ′ such that ω′ ◦ (f × f) = ω and
f ◦ C = C ′ ◦ f .

We will also consider modifications of the categories mentioned so far as
auxiliary structures. Loc c© is the full subcategory of Loc whose objects are
contractible. *Alg1 is defined in the same way as its subcategory *Alg

m
1 ,

but dropping the restriction of injectivity and allowing general unital ∗-
homomorphisms. Similarly, pSympl

K
is defined in the same way as its sub-

category pSymplm
K
, dropping the restriction to injective morphisms.5 Fi-

nally, Sympl
K
is the full subcategory of pSymplm

K
, where the (complexified

if K = C) pre-symplectic form is now assumed to be weakly non-degenerate.

2.2. The relative Cauchy evolution

We call a Loc-morphism ψ : M → N Cauchy whenever the image ψ (M)
contains a Cauchy surface for N ; see [23, Appx.A.1] for some properties of
Cauchy morphisms. A locally covariant theory F : Loc → Phys is said
to obey the time-slice axiom if and only if Fψ : FM → FN is a Phys-
isomorphism whenever ψ ∈ Loc (M ,N) is Cauchy.

For locally covariant theories obeying the time-slice axiom, it is possible
to define the relative Cauchy evolution [12], which captures the dynamical
reaction of the theory to a local perturbation of the background metric; its
functional derivative with respect to the metric perturbation is closely related

3For the categorical notions of equalisers, which are also known as difference kernels,
intersections and unions see [39] or [23, Appx.B].
4A C-involution on a complex vector space V is a complex-conjugate linear map C : V → V

satisfying C ◦ C = idV .
5Note that in [24], pSympl

K
denotes the category we call pSymplm

K
here. As non-monic

morphisms arise when considering the universal theory of the free Maxwell field, it is
necessary to indicate unambiguously whether we only allow for monics or not.
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to the stress-energy tensor of the theory, see [12, 23, 24]. The relative Cauchy
evolution can thus be regarded as the natural replacement of the action.

Let M = (M, g, o, t) ∈ Loc. A globally hyperbolic perturbation h of M
is a compactly supported, symmetric and smooth tensor field such that the
modification M [h] := (M, g + h, o, th) becomes a Loc-object, where th is the
unique choice for a time-orientation on (M, g + h) that coincides with t out-
side supph. We write H (M) for all globally hyperbolic perturbations of M ,
while H (M ;K) denotes the subset of all globally hyperbolic perturbations
whose support is contained in a subset K ⊆ M . For each h ∈ H (M), we
define open sets M± [h] :=M \ J∓

M
(supph), which will become Loc-objects

in their own right if endowed with the structures induced by M or M [h]6

by [23, Lem.3.2(a)]. We denote these Loc-objects by M
± [h] = M |M±[h] =

(M± [h] , g|M±[h], o|M±[h], t|M±[h]). By [23, Lem3.2(b)], the inclusion maps

ιM±[h]M :M± [h] −→M and ιM±[h]M [h] :M
± [h] −→M [h]

become Cauchy morphisms, which we will denote by

ı±
M

[h] : M± [h] −→ M and ±
M

[h] : M± [h] −→ M [h] .

Now, given a locally covariant theory F : Loc → Phys which obeys the
time-slice axiom, the relative Cauchy evolution for F induced by h ∈ H (M)
is the Phys-automorphism FM → FM defined by

rceF
M

[h] := F
(

ı−
M

[h]
)

◦
(

F
(

−
M

[h]
))−1

◦ F
(

+
M

[h]
)

◦
(

F
(

ı+
M

[h]
))−1

. (1)

3. Some preliminaries on differential forms

Differential forms allow for an elegant geometrical description of electromag-
netism, that extends to curved spacetimes and allows for a relatively easy
quantisation. For M ∈ Loc, we denote the C∞ (M,K)-module of all smooth
K-valued differential p-forms (p ≥ 0) by Ωp (M ;K). Adding the subscript
“0”, i.e. writing Ωp0 (M ;K), will denote the C∞ (M,K)-module of all smooth
K-valued differential p-forms of compact support. By convention, Ω−1

(0) (M ;K)

is the trivial K-vector space.
Several operators on smooth differential forms will be of importance to

us. First, the exterior derivative7 dM : Ωp(0) (M ;K) → Ωp+1
(0) (M ;K) is given,

in abstract index notation, by

(dMω)a1...ap+1
=

p+1
∑

i=1

(−1)
i+1 ∇ai ωa1...ai−1ai+1...ap+1

, ω ∈ Ωp (M ;K),

where ∇ denotes the Levi-Civita connection on M ; by convention we set
dM : Ω−1

(0) (M ;K) → Ω0
(0) (M ;K) to be the zero map. TheK-vector space of all

(compactly supported) smooth K-valued differential p-forms ω ∈ Ωp(0) (M ;K)

6It does not matter whether we use M or M [h] since M± [h] ∩ supph = ∅.
7The subscript ‘(0)’ indicates that the map is well-defined for both with and without the
subscript.
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which are closed, that is, dMω = 0, is denoted by Ωp(0),d (M ;K). We say that

ω ∈ Ωpd (M ;K) is exact if and only if there is θ ∈ Ωp−1 (M ;K) such that ω =

dMθ. The K-vector spaces Hp
dR,(c) (M ;K) := Ωp(0),d (M ;K) /dMΩp−1

(0) (M ;K),

called the de Rham cohomology groups (with compact supports), indicate to
what extent the closed smooth differential forms (with compact support) of
a smooth manifold fail to be exact (via compactly supported smooth differ-
ential forms) and are deeply connected to the topology of the manifold via
singular homology. By Poincaré duality [29, §V.4], we have Hp

dR (M ;K) ∼=

(H4−p
dR,c (M ;K))∗, where ‘∗’ denotes the vector space dual.

Next, the Hodge-∗-operator ∗M : Ωp(0) (M ;K) → Ω4−p
(0) (M ;K) is the

C∞ (M,K)-module isomorphism defined by

ω ∧ ∗Mη =
1

p!
ωa1...apη

a1...ap volM , ω, η ∈ Ωp (M ;K),

with inverse ∗−1
M

= (−1)p(4−p)+1∗M . The Hodge-∗-operator provides a weakly
non-degenerate K-bilinear pairing

∫

M
(·)∧∗M (·) of Ωp (M ;K) and Ωp0 (M ;K).

Using the exterior derivative and the Hodge-∗-operator, we form the
exterior coderivative δM := (−1)p ∗−1

M
dM∗M : Ωp(0) (M ;K) → Ωp−1

(0) (M ;K),

which is formally adjoint to dM in the sense that
∫

M

ω ∧ ∗MδMη =

∫

M

dMω ∧ ∗Mη

whenever ω ∈ Ωp (M ;K) and η ∈ Ωp+1 (M ;K) such that suppω ∩ supp η is
compact. In abstract index notation

(δMω)a1...ap−1
= −∇a0ω

a0
a1...ap−1

, ω ∈ Ωp (M ;K).

Ωp(0),δ (M ;K) will denote the K-vector space of all (compactly supported)

smooth K-valued differential p-forms ω ∈ Ωp (M ;K) which are coclosed, that
is δMω = 0. ω ∈ Ωpδ (M ;K) is called coexact if and only if there is η ∈
Ωp+1 (M ;K) with ω = δMη. Closed and coclosed as well as exact and coexact
smooth differential forms are related to each other by the Hodge-∗-operator.

The d’Alembertian or wave operator �M : Ωp(0) (M ;K) → Ωp(0) (M ;K)

is defined by �M := −δMdM − dMδM . In abstract index notation we have

(�Mω)a1...ap = gab∇a∇b ωa1...ap +

p
∑

i=1

(−1)pgab [∇a,∇ai ]ωba1...ai−1ai+1...ap ,

ω ∈ Ωp (M ;K),

which establishes that �M is a normally hyperbolic linear differential oper-
ator of metric type (see [3, §1.5] for a definition but note that [3] employ the
(−,+,+,+)-metric signature). Hence, [3] shows that �M has a well-posed
Cauchy problem and that there are unique retarded and advanced Green’s

operators G
ret/adv
M

such that suppG
ret/adv
M

ω ⊆ J
+/−
M

(suppω) (usage of “ad-
vanced” and “retarded” is reversed in [3]). We will make extensive use of
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the difference GM := Gret
M

− Gadv
M

,8 and collect at this point some useful
properties:

Lemma 3.1. The following hold for any p ≥ 0: (a) The identities GMdMω =
dMGMω and GMδMω = δMGMω hold for all ω ∈ Ωp0 (M ;K). (b) The
kernel of �M on Ωp0 (M ;K) is trivial, while the range of GM on Ωp0 (M ;K)
coincides with the space of η ∈ Ωp (M ;K) such that �Mη = 0 and so that
η has spacelike compact support (which is equivalent to having compact sup-
port on Cauchy surfaces [41]). The kernel of GM on Ωp0 (M ;K) is given by
�MΩp0 (M ;K). (c) The identity GMdMδMω = −GMδMdMω holds for all
ω ∈ Ωp0 (M ;K). (d) The kernels of dM�M and δM�M on Ωp0 (M ;K) are
Ωp0,d (M ;K) and Ωp0,δ (M ;K), respectively. (e) The kernels of dMGMδM and

δMGMdM on Ωp0 (M ;K) are both equal to Ωp0,d (M ;K)⊕ Ωp0,δ (M ;K).

Proof. (a) is proved, e.g., in [40, Prop. 2.1]; (b) is standard for normally
hyperbolic operators, e.g., [3, Thm. 3.4.7]; (c) is a special case of (b) using the
definition of �M . For (d), we observe that dM�Mα = 0 for α ∈ Ωp0 (M ;K)
implies �MdMα = 0 and hence that dMα = 0 by (b); conversely, it is clear
that α ∈ Ωp0,d (M ;K) implies dM�Mα = 0. Similarly, δM�Mα = 0 if and

only if δMα = 0. Finally, if dMGMδMω = 0 for ω ∈ Ωp0 (M ;K) then we also
have GMdMδMω = 0 and hence dMδMω = �Mα for some α ∈ Ωp0 (M ;K)
by (b); as it is clear that dM�Mα = 0, (d) gives α ∈ Ωp0,d (M ;K). By

(c), we also have GMδMdMω = 0 and by similar arguments, δMdMω =
�Mβ for β ∈ Ωp0,δ (M ;K). We deduce that �M (ω + α + β) = 0 and hence

ω ∈ Ωp0,d (M ;K) + Ωp0,δ (M ;K). This is actually a direct sum, because any

ω ∈ Ωp0,d (M ;K) ∩Ωp0,δ (M ;K) obeys �Mω = 0, so the intersection is trivial.

The reverse inclusion is easily shown using (c). �

4. Classical and quantum Maxwell theories

4.1. The initial value problem

For M ∈ Loc, the free Maxwell equations for the electromagnetic field
strength tensor F ∈ Ω2 (M ;K) are

dMF = 0 and δMF = 0. (2)

Given the electric field E ∈ Ω1
0,δ (Σ;K) and the dualised magnetic field B ∈

Ω2
0,d (Σ;K) on a smooth spacelike Cauchy surface Σ for M with inclusion

map ιΣ : Σ →M , we can formulate the well-posed initial value problem [14,
Prop. 2.1]:

dMF = 0, δMF = 0, −ι∗ΣF = B and ∗Σ ι
∗
Σ ∗−1

M
F = E. (3)

Borrowing terminology from [8], we will generally call this the F-description
of the free Maxwell field.

8Note that the advanced-minus-retarded Green operator is often used in the literature,
e.g., [21, 24].
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As is well-known, on any M ∈ Loc c©, every solution of (2) can be ex-
pressed as F = dMA (i.e., Fab = ∇aAb − ∇bAa) because H2

dR (M ;K) = 0,
whereupon the free Maxwell equations (2) can be re-expressed as the sin-
gle equation δMdMA = 0 for the electromagnetic vector potential A ∈
Ω1 (M ;K). Owing to gauge freedom, however, the initial value problem

δMdMA = 0, −ι∗ΣA = A and ∗Σ ι
∗
Σ ∗−1

M
dMA = E,

where Σ, ιΣ and E as above and A ∈ Ω1
0 (Σ;K) is the magnetic vector po-

tential, i.e. dΣA = B, is not well-posed. Instead, a well-posed initial value
problem is obtained by passing to suitable equivalence classes of initial data
and solutions [16, 40, 42]. We will generally refer to the description in terms
of the vector potential as the A-description of the free Maxwell field.

4.2. Classical phase space and quantum algebra: contractible spacetimes

As explained in the introduction, we start with the description of the classical
and the quantised free Maxwell field on contractible curved spacetimes, where
there is no dispute about the symplectic spaces and the unital *-algebras of
the smeared quantum field and the F- and the A-description coincide.

Hence, we continue to assume that M ∈ Loc c©. In the F- and the
A-description of the free Maxwell field, there are three descriptions of the
classical field theory in terms of a (possibly complexified) symplectic space:
the phase space of the Cauchy data, the phase space of the solutions and the
phase space of the test forms (cf. [16, §3] for the case of the electromagnetic
vector potential). However, these three choices are symplectomorphic and
hence equivalent. In view of the unital *-algebras of the smeared quantum
field and their relation to the classical phase space, we find it most convenient
to work with the phase space of the test forms.

F-description. As shown in the proof of [14, Prop. 2.1], any solution of (3)
with compact support on Cauchy surfaces is also a solution for the initial
value problem of the wave equation �MF = 0 with compactly supported
Cauchy data, and can be written as [14, Prop. 2.2]:

F = GM (dMθ + δMη) , θ ∈ Ω1
0,δ (M ;K) , η ∈ Ω3

0,d (M ;K) .

This general form may be simplified as M is contractible (so H1
dR (M ;K) is

trivial), and hence Ω1
0,δ (M ;K) = δMΩ2

0 (M ;K) and Ω3
0,d (M ;K) = dMΩ2

0 (M ;K).

Making use of Lem. 3.1, we see that any solution of (3) with compact support
on Cauchy surfaces can be written as

F = dMGMδMω, ω ∈ Ω2
0 (M ;K).

By Lem. 3.1(e), ω, η ∈ Ω2
0(M ;K) give rise to the same solution if and only if

they differ by an element of Ω2
0,d (M ;K)⊕Ω2

0,δ (M ;K). As M is contractible,

we have Ω2
0,d (M ;K) = dMΩ1

0 (M ;K) and Ω2
0,δ (M ;K) = δMΩ3

0 (M ;K), so

the space of the test forms may be described as a (complexified if K = C)
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symplectic space FM :=
([

Ω2
0 (M ;K)

]

,wM ,
)

,9 where
[

Ω2
0 (M ;K)

]

:= Ω2
0 (M ;K)

/ (

dMΩ1
0 (M ;K)⊕ δMΩ3

0 (M ;K)
)

,

wM ([ω] , [η]) := −

∫

M

GMδMω ∧ ∗MδMη, (4)

[ω] := [ω] , [ω] , [η] ∈
[

Ω2
0 (M ;K)

]

,

(the complex conjugation is to be omitted if K = R). The fact that wM

is a well-defined and non-degenerate follows immediately from the following
result:

Lemma 4.1. Let M ∈ Loc (contractibility is not assumed). Then

(ω, η) 7→ −

∫

M

GMδMω ∧ ∗MδMη,

is a skew-symmetric, K-bilinear form on Ω2
0 (M ;K), with radical Ω2

0,d (M ;K)⊕

Ω2
0,δ (M ;K).

Proof. Bilinearity is obvious and skew-symmetry follows from general prop-
erties of GM . Fixing ω ∈ Ω2

0 (M ;K) and noting that
∫

M

GMδMω ∧ ∗MδMη =

∫

M

dMGMδMω ∧ ∗Mη ∀η ∈ Ω2
0 (M ;K) , (5)

the non-degeneracy of the pairing
∫

M
(·)∧∗M (·) : Ω2 (M ;K)×Ω2

0 (M ;K) →
K implies that the left-hand side of (5) vanishes for all η ∈ Ω2

0 (M ;K) if
and only if dMGMδMω = 0 and hence ω ∈ Ω2

0,d (M ;K) ⊕ Ω2
0,δ (M ;K) by

Lem. 3.1(e). �

The corresponding quantum version, that is, the unital *-algebra FM

of the smeared quantum field for the free Maxwell field in terms of the field
strength tensor is generated by the abstract elements FM (ω), ω ∈ Ω2

0(M ;C),
which obey the following relations (cf. [14, Def. 3.1]):

• Linearity and Hermiticity:

FM (λω + µη) = λFM (ω) + µFM (η) and FM (ω)
∗
= FM (ω)

∀λ, µ ∈ C, ∀ω, η ∈ Ω2
0 (M ;C).

• Free Maxwell equations in the weak sense:

FM (dMθ) = 0 and FM (δMη) = 0 ∀θ ∈ Ω1
0 (M ;C) , ∀η ∈ Ω3

0 (M ;C) .

• Commutation relations:10

[FM (ω) ,FM (η)] =

(

− i

∫

M

GMδMω ∧ ∗MδMη

)

· 1FM ∀ω, η ∈ Ω2
0 (M ;C) .

As will become clear from the discussion of the quantisation functor later,
FM is simple.

9The use of the same symbol F [and later A] for both K = R and K = C, should not give
rise to any confusion.
10Also known as Lichnerowicz’s commutation relations – see the remark in [16, §4] and
[37].
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A-description. In the A-description, the classical field theory can be de-
scribed by the (complexified if K = C) symplectic space

AM =
([

δMΩ2
0 (M ;K)

]

, vM ,
)

,

where (omitting the complex conjugation if K = R)
[

δMΩ2
0 (M ;K)

]

:= δMΩ2
0 (M ;K)

/

δMdMΩ1
0 (M ;K) ,

vM ([θ] , [φ]) := −

∫

M

GMθ ∧ ∗Mφ,

[θ] :=
[

θ
]

, [θ] , [φ] ∈
[

δMΩ2
0 (M ;K)

]

,

see [16, 40, 13, 15]. Note, the first two references assume that M has compact
Cauchy surfaces. This assumption is not necessary here (though we have con-
tractibility at present). Also, recall the identity δMΩ2

0 (M ;K) = Ω1
0,δ (M ;K)

due to the assumption M ∈ Loc c©. The corresponding simple unital *-
algebra AM of the smeared quantum field for the free Maxwell field in
terms of the vector potential is generated by the abstract symbols [A]

M
(θ),

θ ∈ δMΩ2
0 (M ;C), obeying the following relations [16, 21, 40, 42]:

• Linearity and hermiticity:

[A]
M

(λθ + µφ) = λ[A]
M

(θ) + µ[A]
M

(φ) and [A]
M

(θ)
∗
= [A]

M

(

θ
)

∀λ, µ ∈ C, ∀θ, φ ∈ δMΩ2
0 (M ;C).

• Free Maxwell equations in the weak sense:

[A]
M

(δMdMθ) = 0 ∀θ ∈ Ω1
0 (M ;C) .

• Commutation relations:

[

[A]
M

(θ) , [A]
M

(φ)
]

=

(

− i

∫

M

GMθ ∧ ∗Mφ

)

· 1AM ∀θ, φ ∈ δMΩ2
0 (M ;C) .

Functorial properties. Let ψ ∈ Loc c© (M ,N) be a morphism between con-
tractible spacetimes M and N . Then there is a natural pushforward of
compactly supported smooth K-valued differential forms, ψ∗ : Ωp0(M ;K) →
Ωp0(N ;K) as well as the pullback ψ∗ : Ωp(N ;K) → Ωp(M ;K), and there is
a well-known identity ψ∗GNψ∗ = GM (cf. e.g., [24, Sec. 3]). Making use
of these properties, we obtain Sympl

K
-morphisms Fψ : FM → FN and

Aψ : AM → AN by Fψ [ω] := [ψ∗ω] for ω ∈ Ω2
0 (M ;K) and Aψ [θ] :=

[ψ∗θ] for θ ∈ δMΩ2
0 (M ;K). Similarly, putting Fψ (FM (ω)) := FN (ψ∗ω) for

ω ∈ Ω2
0 (M ;K) and also Aψ ([A]

M
(θ)) := [A]

N
(ψ∗θ) for θ ∈ δMΩ2

0 (M ;K)
well-defines *Alg

m
1 -morphisms Fψ : FM → FN and Aψ : AM → AN . In

this way, we obtain functors

F : Loc c© −→ Sympl
K

and A : Loc c© −→ Sympl
K
,

F : Loc c© −→ *Alg
m
1 and A : Loc c© −→ *Alg

m
1 .

It is straightforward to see that the map Ω2
0 (M ;K) ∋ ω 7→ δMω ∈ δMΩ2

0 (M ;K)
gives rise to a Sympl

K
-isomorphism ηM : FM → AM for each M ∈ Loc c©

and that the family {ηM}M∈Loc c©
thus obtained form the components of



Dynamical locality of the free Maxwell field 13

a natural isomorphism η : F→̇A. Thus, F and A are equivalent physi-
cal theories on Loc c©. The quantum version of η is a natural isomorphism
ε : F→̇A determined by εMFM (ω) = [A]

M
(δMω) for ω ∈ Ω2

0 (M ;K) and
M ∈ Loc c©, and precisely generalises the “natural algebraic relation” be-
tween the Borchers-Uhlmann algebras for the F- and the A-descriptions dis-
cussed in [8] for Minkowski space.

4.3. Extensions to non-contractible spacetimes

The previous subsection described the classical and the quantised free Maxwell
field on contractible curved spacetimes in terms of both the field strength ten-
sor and the vector potential. However, there are physically relevant curved
spacetimes with non-trivial topologies such that not every field strength ten-
sor F can be derived from a vector potential A via F = dA (Fab = ∇aAb −
∇bAa), which generally leads to interesting features such as topological (elec-
tric and magnetic) charges and superselection rules thereof [44, 1]. An exam-
ple of such a curved spacetime is the Schwarzschild-Kruskal spacetime, which
has the topology of M ∼= R×R×S2, hence H2

dR (M ;K) 6= 0 6= H2
dR,c (M ;K).

Such features ultimately prevent one from having classical and quantised the-
ories of the free Maxwell field in the usual, straightforward manner (in the
F- as well as in the A-description).

Universal theories. In order to deal with non-trivial spacetime topologies and
to analyse the impact they have on the (unital) (C)*-algebras of the quantum
field theory, Fredenhagen has suggested the use of (the analogue of) the uni-
versal algebra construction in [26, 28, 27], to obtain a ‘minimal’ description
compatible with, and unifying, the local descriptions of the quantum field the-
ory on contractible regions of the spacetime. This was addressed in [33, Appx.
A] and carried out in detail in [14]. The final result of the analysis is very sim-
ple in the F-description: the universal algebra FuM is precisely what would
be obtained by removing the restriction to M ∈ Loc c© in the construction
of FM and allowing general M ∈ Loc instead (cf. [14, Prop. 3.1+ 3.2]). The
difference lies in the fact that we now have Ω2

0,d (M ;K) 6= dMΩ1
0 (M ;K) and

Ω2
0,δ (M ;K) 6= δMΩ3

0 (M ;K) if H2
dR (M ;K) 6= 0 (and hence H2

dR,c (M ;K) 6= 0

by Poincaré duality). This implies that FuM is non-simple and possesses a
non-trivial centre whenever M ∈ Loc such that H2

dR (M ;K) 6= 0. Of course,
FuM = FM for all M ∈ Loc c©.

A similar construction can be carried out for the classical field theory,
that is, there exists a ‘universal’ (complexified if K = C) pre-symplectic space
which can be constructed from the local (complexified if K = C) symplectic
spaces of the contractible spacetime regions. For each M ∈ Loc, FuM :=
([

Ω2
0 (M ;K)

]

,wuM ,
)

is the (complexified if K = C) pre-symplectic space
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given by (omitting the complex conjugation if K = R)
[

Ω2
0 (M ;K)

]

:= Ω2
0 (M ;K)

/ (

dMΩ1
0 (M ;K)⊕ δMΩ3

0 (M ;K)
)

,

wuM ([ω] , [η]) := −

∫

M

GMδMω ∧ ∗MδMη, (6)

[ω] := [ω] , [ω] , [η] ∈
[

Ω2
0 (M ;K)

]

,

which is well-defined as a consequence of Lem. 4.1. On contractible spacetimes
M ∈ Loc c©, FuM coincides precisely with FM defined by (4). However,
the skew-symmetric bilinear form wuM is degenerate on spacetimes with
non-trivial H2

dR (M ;K) as can be seen from Lemma 4.1. Indeed, closed but
non-exact ω ∈ Ω2

0 (M ;K) give rise to elements in the radical radwuM that
will be called electric topological degeneracies, while coclosed but non-coexact
ω ∈ Ω2

0 (M ;K) give rise to magnetic topological degeneracies of wuM (cf. [14,
Prop.3.3]). Putting this another way, there is a linear isomorphism

H2
dR,c(M)⊕H2

dR,c(M) −→ radwuM

[α]⊕ [β] 7−→ [α+ ∗Mβ],

where the square brackets on the left are cohomology classes. The motivation
for our nomenclature is that an electric topological degeneracy ω defines a
classical observable F 7→

∫

M
F ∧ ∗Mω. By means of Poincaré duality the-

ory [10, §1.5] the space of such observables is spanned by integrals of the form
∫

S
∗MF for some closed 2-surface S that can be chosen to lie in a spacelike

Cauchy surface, and so measures the topological electric charge enclosed by S.
Likewise, magnetic degeneracies determine observables measuring magnetic
fluxes.

Example 4.2. Let M be the Cauchy development of the exterior of a unit
ball in the t = 0 hyperplane of Minkowski spacetime. Then H2

dR (M ;K) ∼= K,
and H2

dR,c (M ;K) ∼= K is generated by ω = f(t, r)dt ∧ dr in spherical polar

coordinates, where f ∈ C∞
0 (R × (1,∞)). The observable

∫

M
F ∧ ∗Mω is

proportional to the electric flux through any closed 2-surface in the t = 0
plane enclosing the excluded ball, while

∫

M
F ∧ ω is proportional to the

magnetic flux. (It is interesting to compare this with [42, Example 3.7], in
which context only the electric charges appear.)

For any Loc-morphism ψ : M → N , we define Fuψ : FM → FN

and FuM → FuN by extending the previous definitions, i.e., Fuψ [ω] :=
[ψ∗ω] and Fuψ (FM (ω)) := FN (ψ∗ω) for ω ∈ Ω2

0 (M ;K), thus obtaining
morphisms in pSympl

K
and *Alg1 respectively. This yields functors Fu :

Loc → pSympl
K
and Fu : Loc → *Alg1, which will be called the classical

universal F-theory and quantised universal F-theory of the free Maxwell field.
Note that on restriction to contractible spacetimes, we recover the previously
constructed theories: Fu|Loc c©

= F and Fu|Loc c©
= F.

Reduced theories. The degeneracies just mentioned ultimately turn out to
obstruct desirable properties of local covariance and dynamical locality. To
restore them, we may modify the theory by forming quotients by the larger
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direct sum of closed and coclosed forms, instead of quotienting by the direct
sum of exact and coexact forms, thus obtaining a classical reduced F-theory
of the free Maxwell field R : Loc → Sympl

K
. In more detail, for each

M ∈ Loc, RM :=
(q
Ω2

0 (M ;K)
y
, rM ,

)

, where
q
Ω2

0 (M ;K)
y
:= Ω2

0 (M ;K)
/ (

Ω2
0,d (M ;K)⊕ Ω2

0,δ (M ;K)
)

,

rM (JωK, JηK) := −

∫

M

GMδMω ∧ ∗MδMη, (7)

JωK := JωK , JωK, JηK ∈
q
Ω2

0 (M ;K)
y
,

(omitting complex conjugation if K = R). For any Loc-morphism ψ : M →
N , Rψ : RM → RN is given by JωK 7−→ Jψ∗ωK, ω ∈ Ω2

0 (M ;K). RM is
precisely obtained from FuM by quotienting out the radical of wuM . We
also see that RM = FuM whenever M ∈ Loc such that H2

dR (M ;K) = 0
(which implies H2

dR,c (M ;K) = 0 by Poincaré duality and thus Ω2
0,d (M ;K) =

dMΩ1
0 (M ;K) and Ω2

0,δ (M ;K) = δMΩ3
0 (M ;K)). Hence R|Loc c©

= F .
The quantised reduced F-theory of the free Maxwell field, R : Loc →

*Alg
m
1 , is given for each M ∈ Loc by the simple unital *-algebra RM

generated by the abstract elements RM (ω), ω ∈ Ω2
0 (M ;C), subject to the

following relations:

• Linearity and Hermiticity:

RM (λω + µη) = λRM (ω) + µRM (η) and RM (ω)
∗
= RM (ω)

∀λ, µ ∈ C, ∀ω, η ∈ Ω2
0 (M ;C).

• Strengthened free Maxwell equations in the weak sense:

RM (ω) = 0∀ω ∈ Ω2
0,d (M ;C)⊕ Ω2

0,δ (M ;C).

• Commutation relations:

[RM (ω) ,RM (η)] =

(

− i

∫

M

GMδMω ∧ ∗MδMη

)

· 1RM ∀ω, η ∈ Ω2
0 (M ;C) .

The unital *-monomorphism Rψ : RM → RN is given by Rψ (RM (ω)) :=
RN (ψ∗ω) for ω ∈ Ω2

0 (M ;K). It is readily seen that RM = FuM whenever
M ∈ Loc such that H2

dR (M ;K) = 0 and thus R|Loc c©
= F.

We conclude this subsection with some remarks. First, our classical
reduced theory of the free Maxwell field is closely related to the “charge-zero
phase space functor” for electromagnetism given in [5, §7]. The latter functor
actually yields degenerate pre-symplectic spaces. However, as pointed out in
[25], the treatment of affine theories used in [5] should be corrected; once this
is done their approach would coincide with our reduced theory.

Second, it would also have been possible to start in the A-description of
the free Maxwell field and then obtain a corresponding classical and quan-
tised universal A-theory Au : Loc → pSympl

K
and Au : Loc → *Alg1

from A : Loc c© → pSympl
K

and A : Loc c© → *Alg
m
1 , in the same way

as Fu : Loc → pSympl
K

and Fu : Loc → *Alg1 were obtained from
F : Loc c© → pSympl

K
and F : Loc c© → *Alg

m
1 . As A and F , and A
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and F are equivalent theories, that is, naturally isomorphic as functors, it
follows on abstract categorical grounds that Au is naturally isomorphic to
Fu and that Au is naturally isomorphic to Fu. This means that the universal
F-theory and the universal A-theory of the free Maxwell field are equivalent
theories. Choosing the universal F -theory over the A-theory and vice versa
has no physical significance and purely expresses a different point of view on
the same theory. In the following sections, we will take the point of view of
the F-description, which slightly simplifies some arguments as we are auto-
matically working in a gauge invariant setting. In fact, there is a sense in
which the universal algebra construction and its classical analogue favour the
F-description. An explicit expression for AuM and AuM , where M ∈ Loc,
purely in terms of (equivalence classes of) coclosed smooth K-valued differen-
tial 1-forms appears only to be available when H1

dR (M ;K) and H2
dR (M ;K)

are both trivial. The reason for this is that the universal algebra construc-
tion and its classical analogue allow not only for a 1-form potential for the
field strength, but also for a description in terms of a 3-form potential, i.e.,
V ∈ Ω3 (M ;K) such that F = δV .

Finally, we have described the various quantised theories F, Fu and R,
by constructing the algebras in each spacetime and giving the morphisms
corresponding to spacetime embeddings explicitly. However, we can also de-
scribe them more abstractly as the result of composing the corresponding
classical theories F , Fu and R with a quantisation functor that implements
the infinitesimal Weyl quantisation of (complexified) pre-symplectic spaces.
Namely, given any complexified pre-symplectic space (V, ω, C),11 the unital
*-algebra Q (V, ω, C) is defined to be ∗-algebra generated by abstract ele-
ments QV (v) (v ∈ V ), subject to linearity of v 7→ QV (v), the hermiticity
condition QV (v)

∗ = QV (Cv), and commutation relations [QV (v),QV (w)] =
iω(v, w)1Q(V,ω,C). Further, if f : (V, ωV , CV ) → (W,ωW , CW ) is a symplectic
C-homomorphism (again complexifying if needed), thenQf : Q (V, ωV , CV ) →
Q (W,ωW , CW ) is the unique unital *-homomorphism such thatQf(QV (v)) =
QW (fv) for all v ∈ V . These descriptions give rise to functorsQ : pSympl

K
→

*Alg1.
It turns out that Q (V, ω, C) is a simple unital *-algebra whenever ω

is weakly non-degenerate [2, Scholium 7.1] and if f is injective, Qf will
be injective.12 Hence, Q also gives rise to functors Sympl

K
→ *Alg

m
1 and

pSymplm
K

→ *Alg
m
1 , all of which will be denoted by the same symbol Q

and called the quantisation functor. For the various locally covariant theories
introduced above it holds that R = Q ◦ R, Fu = Q ◦ Fu and F = Q ◦ F as
well as A = Q ◦ A.

4.4. Electromagnetic duality

As a slight digression, but with a view to later developments, we discuss
the status of electromagnetic duality in our theories. In each M ∈ Loc, the

11Real pre-symplectic spaces are treated by first complexifying them.
12See [24] which discusses an equivalent description using the symmetric tensor product.
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Hodge-∗ is a linear isomorphism of Ω2
0(M) to itself. As δM∗M = (−1)p+1∗M

dM and dM∗M = (−1)p ∗M δM on Ωp(M), it is easily seen that ∗M induces
an isomorphism of the quotient space

[

Ω2
0 (M ;K)

]

given by [ω] 7→ [∗Mω],
and evidently obeys Fψ[∗Mω] = [∗Nψ∗ω] for every morphism ψ : M → N

in Loc c©. At the level of solutions, dMGMδM ∗M ω = −∗M dMGMδMω for
ω ∈ Ω2

0(M) and one easily derives from this that

wM ([∗Mω] , [∗Mη]) = −

∫

M

dMGMδM ∗M ω ∧ (∗M ∗M η)

= −

∫

M

dMGMδMω ∧ ∗Mη

= wM ([ω] , [η]) , [ω] , [η] ∈
[

Ω2
0 (M ;K)

]

.

From these results, it follows that the electromagnetic duality rotations

ΘM (α)[ω] = [cosαω + sinα ∗M ω] ω ∈ Ω2
0(M), M ∈ Loc c© (8)

yield automorphisms Θ(α) ∈ Aut(F) for α ∈ R; as Θ(α)Θ(β) = Θ(α + β)
and Θ(α + 2π) = Θ(α) for all α, β ∈ R, we see that there is a faithful
homomorphism from U(1) into Aut(F). In a similar way one may check that
these automorphisms lift to automorphisms of both the universal and reduced
theories Fu andR. Furthermore, they induce automorphisms of the quantised
theories by Θ̂M (α)FM (ω) = FM (cosαω + sinα ∗M ω) and so forth.

Automorphisms of locally covariant theories have been identified as
global gauge transformations [19]. This raises an interesting question, because
the electromagnetic duality is not a symmetry of the Maxwell Lagrangian
L = − 1

4F ∧∗F , which changes sign under F 7→ ∗F . One might be concerned
that the presence of these automorphisms is an indication that the theories
under consideration are not true reflections of the original physics. Against
this, we note that the Maxwell Lagrangian has other unusual properties, in
particular, the field equations obtained by variation with respect to F are
trivial. The Maxwell equations can be derived from the Lagrangian, however,
by demanding conservation of the stress-energy tensor constructed by varying
the action with respect to the metric. As electromagnetic duality rotations
leave the stress-energy tensor invariant, there is good reason to accept them
as bona fide symmetries.

5. Kinematical and dynamical nets, and dynamical locality

One of the virtues of locally covariant quantum field theory is that it gen-
eralises the framework of algebraic quantum field theory in a natural way
[12, §2.4]. Let F : Loc → (C)*Alg

m
1 be a locally covariant quantum field

theory, where we think of the algebra elements as local observables or as lo-
cal smearings of the quantum field. For M ∈ Loc, we denote the set of all
globally hyperbolic open subsets of M by O (M). Due to the functoriality
of F , O (M) ∋ O 7→ FιO (FM |O) is a net of local unital (C)*-algebras,
where ιO : O →M denotes the inclusion map and M |O denotes O endowed
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with the structures as an oriented globally hyperbolic spacetime induced by
M . We call this net of local unital (C)*-algebras the kinematical net of F
for M and also denote ιO (FM |O) by F

kin (M ;O). The adjective “kinemat-
ical” is chosen because the construction only relies on the functoriality of
F , which corresponds to isotony in algebraic quantum field theory, that is,
a Haag-Araki-Kastler axiom referring to the kinematics of a quantum field
theory.

By contrast, the dynamical net of F for M ∈ Loc is a net of local uni-
tal (C)*-algebras whose construction refers to the relative Cauchy evolution
of F and hence to dynamical aspects of the locally covariant quantum field
theory [23, §5]. We thus assume that F obeys the time-slice axiom and take
K compact in M ∈ Loc. Then we consider all elements of FM which are in-
sensitive to all globally hyperbolic perturbations h ∈ H

(

M ;K⊥
)

supported

in the region K⊥ :=M \ JM (K) that is causally inaccessible to K,

F • (M ;K) =
{

a ∈ FM | rceF
M

[h] a = a ∀h ∈ H
(

M ;K⊥
)}

.

This can be used to define what it means for an observable or smearing of
the quantum field to be localised in K. Finally, to localise observables or
smearings of the quantum field in globally hyperbolic open subsets of M , we
define for all O ∈ O (M),

F dyn (M ;O) :=
∨

K∈K (M ;O)

F • (M ;K) ,

that is, F dyn (M ;O) is defined as the unital (C)*-algebra generated by the
unital (C)*-algebras F • (M ;K), where K ranges over a specific collection
K (M ;O) of compact subsets of O.

The definition of K (M ;O) is slightly involved. First, we define a
Cauchy ball to be an open set of a smooth spacelike Cauchy surface Σ for
M diffeomorphic to an open ball of R3 under a smooth chart for Σ, with the
chart image containing the ball’s closure.13 A finite union of causally disjoint
Cauchy balls is called a multi-diamond, of which the Cauchy balls form the
base. Finally, following [23, §5], K (M ;O) is the set of all compact subsets
of O ∈ O (M) which have a multi-diamond open neighbourhood whose base
is contained in O.

The assignment O (M) ∋ O 7→ F dyn (M ;O) is the dynamical net of F
for M and a locally covariant quantum field theory is said to be dynamically
local if and only if it obeys the time-slice axiom and the dynamical net coin-
cides with the kinematical net. Note that F kin (M ;O) and F dyn (M ;O) are
both subalgebras of FM .

The kinematical and dynamical nets can be defined in much more gen-
eral locally covariant theories, including categories Phys which do not have
a notion of the image of a morphism. To do this, we redefine F kin (M ;O) as

13Every point x ∈ M is contained in a Cauchy ball: let Σx be any smooth spacelike
Cauchy surface for M containing x, choose any smooth chart ϕ : U → W ⊆ R3 for Σx

with x ∈ U and ε > 0 such that the ε-ball around ϕ (x) is contained in W , and then take
Bx := ϕ−1 (Bδ(ϕ (x))) with δ < ε.
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FM |O, and focus attention on the unital *-monomorphismmkin
M ;O : F kin (M ;O) →

FM given by mkin
M ;O = FιM ;O, where ιM ;O : M |O → M is the Loc-

morphism induced by the inclusion map of O in M . In categorical termi-
nology, mkin

M ;O is monic and defines a subobject of FM (see [39] or [23, Appx.

B]), thus allowing us to define the kinematical net for every locally covari-
ant theory F : Loc → Phys by the rule assigning to each O ∈ O (M)
the subobject mkin

M ;O : F kin (M ;O) → FM . Also the dynamical net can be
characterised purely in terms of categorical notions, to be specific equalisers,
intersections and unions of subobjects (see again [39] or [23, Appx. B]), and
thus can be formulated for every locally covariant theory F : Loc → Phys

obeying the time-slice axiom. The construction results in an assignment of

O ∈ O (M) to a subobject mdyn
M ;O : F dyn (M ;O) → FM , details of which

can be found in [23, §5]. A locally covariant theory is dynamically local if and

only if mkin
M ;O and mdyn

M ;O are equivalent subobjects (see yet again [39] or [23,

Appx. B]) for every O ∈ O (M).
The net advantage of this abstract categorical viewpoint is an immense

simplification in the argument that the quantised reduced free F-theory R :
Loc → *Alg

m
1 is dynamically local. Since R is related to the classical reduced

free F-theory R : Loc → Sympl
K
via a functorial quantisation prescription,

it is enough to show that R is dynamically local and then prove a small
number of additional properties listed as [24, (L 1-L 4)].

6. Dynamical locality of the universal theory

6.1. The universal theory fails local covariance

It was already pointed out in [14, §3.7] that the quantised universal free F-
theory Fu : Loc → *Alg1 is not a locally covariant quantum field theory
according to [12] because algebra homomorphisms corresponding to space-
time embeddings are not always injective. The same is true for the clas-
sical universal free F-theory Fu : Loc → pSympl

K
. This problem arises

whenever one has a Loc-morphism ψ : M → N between objects obeying
H2
dR,c (M ;K) ∼= H2

dR (M ;K) 6= 0 and H2
dR,c (N ;K) ∼= H2

dR (N ;K) = 0, where
the isomorphisms are due to Poincaré duality. A specific instance may be
given as follows:

Example 6.1. With M as in Example 4.2 and N taken to be Minkowski
spacetime, let ψ : M → N be the inclusion morphism. Then H2

dR (M ;K) ∼=
K, while H2

dR (N ;K) = 0.

Under such circumstances, there exists ω ∈ Ω2
0,d (M ;K)\dMΩ2

0 (M ;K),

which corresponds to a nonzero element [ω] ∈
[

Ω2
0 (M ;K)

]

= FuM , be-

cause ω cannot be written in the form ω = dMθ + δMη for θ ∈ Ω1
0 (M ;K)

and η ∈ Ω3
0 (M ;K).14 However, the push-forward ψ∗ω ∈ Ω2

0 (N ;K) obeys

14Otherwise, δMη = Gret

M
�M δMη = −Gret

M
δMdM δMη = −Gret

M
δMdM (dMθ − ω) = 0,

so ω = dMθ, a contradiction.
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dNψ∗ω = ψ∗dMω = 0 and hence ψ∗ω ∈ dNΩ1
0 (N ;K) ⊕ δNΩ3

0 (N ;K) be-
cause H2

dR,c (N ;K) = 0. Thus (Fuψ) [ω] = [ψ∗ω] = 0 ∈
[

Ω2
0 (N ;K)

]

and,

similarly, (Fuψ) (FM (ω)) = FN (ψ∗ω) = 0FuN
, so neither Fuψ nor Fuψ is

injective.

A similar argument applies to ω ∈ Ω2
0,δ (M ;K) \ δMΩ2

0 (M ;K). The
elements just described in this and the last paragraph precisely span the
radical of wuM and the centre of FuM , respectively, M ∈ Loc (cf. [14,
Prop.3.3]). Hence, local covariance of Fu and Fu is precisely spoiled by the
radical elements and the central elements, respectively.

Despite the failure of injectivity, the theories Fu and Fu are well-behaved
in other ways. For example, Fu is still a causal functor – local algebras of
causally disjoint regions commute – owing to the form of Lichnerowicz’s com-
mutator. As we will see shortly, both Fu and Fu obey the time-slice axiom, i.e.
Fuψ is a pSympl

K
-isomorphism and Fuψ is an *Alg1-isomorphism whenever

ψ ∈ Loc (M ,N) is Cauchy.

6.2. The universal theory obeys the time-slice axiom

We start with some helpful, more general statements, which will allow us
to show the validity of the time-slice axiom and to compute inverses. The
specification of inverses usually involves certain choices (of representatives
of equivalences classes and of smooth spacelike Cauchy surfaces) and time-
slice maps will help us to efficiently deal with these choices. For the rest of
this subsection, let ψ ∈ Loc (M ,N) be Cauchy, ξ = (E,N, π, V ) a smooth
K-vector bundle over N and P : Γ∞(ξ) → Γ∞(ξ) a normally hyperbolic
differential operator of metric type.

Definition 6.2. A time-slice map for (ψ, ξ, P ) is a K-linear map L : Γ∞
0 (ξ) →

Γ∞
0 (ξ) such that

supp
(

(idΓ∞
0

(ξ) −PL)σ
)

⊆ ψ (M) ∀σ ∈ Γ∞
0 (ξ).

If a particular time-slice map is understood, we will write

σ = σe + Pσ£

for the corresponding decomposition σ£ := Lσ, σe := σ − Pσ£.

Time-slice maps exist by slight modification of a standard construction:
fix any two smooth spacelike Cauchy surfaces Σf and Σp for N such that
Σf ,Σp ⊆ ψ (M) and Σf lies strictly in the future of Σp. This can be achieved
using [23, Lem.A.2] and the splitting theorem of Bernal and Sánchez [7,
Prop.2.4]. Further, let {χ+, χ−} be a smooth partition of unity subordinated
to the open cover

{

I+
N

(Σp) , I
−
N

(

Σf
)}

of N . Define for each σ ∈ Γ∞
0 (ξ)

σe := σ − Pχ+Gadvσ − Pχ−Gretσ, (9)

where Gadv and Gret are the advanced and the retarded Green’s operator for
P , which exist and are unique [3, Cor.3.4.3]. By the properties of χ± and
Gret/adv, suppσe is compactly supported in ψ (M). Finally, σ£ ∈ Γ∞

0 (ξ) is
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defined by σ£ := χ+Gadvσ + χ−Gretσ. However, many properties of time-
slice maps can be proved without using a specific formula. The main techni-
cal point is that any compactly supported solution φ to the inhomogeneous
equation Pφ = σ, where σ ∈ Γ∞

0 (ξ), must be supported in the intersection
J+
N

(suppσ) ∩ J−
N

(suppσ) because φ = Gret/advσ. Let us observe

Lemma 6.3. If L is any time-slice map for (ψ, ξ, P ), we have

suppLσ ⊆ ψ (M)

whenever σ ∈ Γ∞
0 (ξ) with suppσ ⊆ ψ (M); if K is another time-slice map

for (ψ, ξ, P ), then

supp (K − L)σ ⊆ ψ (M) ∀σ ∈ Γ∞
0 (ξ).

Hence,

σeK
− σeL

= Pτ,

where τ ∈ Γ∞
0 (ξ) with supp τ ⊆ ψ (M); moreover,

Lσ|
N\J

−/+
N

(ψ(M))
= G

adv/ret
N

σ|
N\J

−/+
N

(ψ(M))
.

Proof. Taking any σ ∈ Γ∞
0 (ξ) with suppσ ⊆ ψ (M), PLσ = σ−(idΓ∞

0
(ξ) −PL)σ

is (compactly) supported in ψ (M). As Lσ is compactly supported, it follows
that Lσ is supported in J+

N
(ψ (M)) ∩ J−

N
(ψ (M)) = ψ (M) as required.

Next, let σ ∈ Γ∞
0 (ξ). Then by definition of time-slice maps, P (K − L)σ has

support in ψ (M), while (K − L)σ has compact support. Thus (K − L)σ is
(compactly) supported in J+

N
(ψ (M)) ∩ J−

N
(ψ (M)) = ψ (M). The penulti-

mate formula follows from this and the definition σe := σ−Pσ£ = σ−PLσ
for σ ∈ Γ∞

0 (ξ). Finally, our result shows that the action of any timeslice map
on σ is fixed modulo terms compactly supported in ψ(M). Outside this set,
all timeslice maps agree, so we may use the formula implicit in (9) to obtain
the final result. �

As a digression, the existence of a time-slice map for (ψ, ξ, P ) implies
that the following is a short exact sequence of K-linear maps

0 −→ PΓ∞
0 (ξ, ψ (M))

α
−−→ Γ∞

0 (ξ)⊕ PΓ∞
0 (ξ, ψ (M))

β
−−→ Γ∞

0 (ξ) −→ 0

where α : σ 7−→ (σ,−σ) and β : (σ, τ) 7−→ σ + τ , and we denote smooth
sections of ξ with compact support in O ⊂ N by Γ∞

0 (ξ,O). Exactness at
PΓ∞

0 (ξ, ψ (M)) is immediate because α is injective; moreover its image is pre-
cisely the kernel of β, so we have exactness at Γ∞

0 (ξ)⊕PΓ∞
0 (ξ, ψ (M)). Any

time-slice map L for (ψ, ξ, P ) induces γ : Γ∞
0 (ξ) → Γ∞

0 (ξ)⊕PΓ∞
0 (ξ, ψ (M))

by γ : σ 7−→ (σ − PLσ, PLσ), and as β ◦ γ = idΓ∞
0

(ξ), it is clear that β is
surjective and we have a split short exact sequence.

Lemma 6.4. Let η = (D,N, ̺,W ) be a smooth K-vector bundle with a nor-
mally hyperbolic differential operator Q : Γ∞ (η) → Γ∞ (η) such that P and
Q are intertwined by a linear differential operator ∂ : Γ∞ (ξ) → Γ∞ (η), i.e.
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∂◦P = Q◦∂. Suppose L and K are time-slice maps for (ψ, ξ, P ) and (ψ, η,Q),
then for any σ ∈ Γ∞

0 (ξ),

supp (∂Lσ −K∂σ) ⊆ ψ (M)

and accordingly

(∂σ)
eK

− ∂σeL
= Q (∂Lσ −K∂σ) = Qτ

with τ ∈ Γ∞
0 (η), supp τ ⊆ ψ (M).

Proof. We calculate for σ ∈ Γ∞
0 (ξ)

Q (∂Lσ −K∂σ) = ∂PLσ −QK∂σ = ∂ (σ − σeL
)−

(

∂σ − (∂σ)
eK

)

= (∂σ)
eK

− ∂σeL
,

where supp
(

(∂σ)
eK

− ∂σeL

)

⊆ ψ (M). Hence, ∂Lσ−K∂σ is compactly sup-

ported in ψ (M) and the remaining assertion follows. �

Finally, let us apply this to smooth differential forms with a view to
the description of electromagnetism. Let our smooth K-vector bundles be
the (complexified if K = C) p-th exterior power λpN of the cotangent bundle
τ∗N of N for p ≥ 0 and let ψ ∈ Loc (M ,N) be Cauchy. Then taking the
appropriate wave operators as the normally hyperbolic differential operators
acting on smooth differential p-forms, the exterior derivative and the exterior
coderivative provide intertwining operators. The previous lemma now gives
the following.

Lemma 6.5. For any time-slice map L : Ωp0 (N ;K) → Ωp0 (N ;K), we have for
ω ∈ Ωp0 (N ;K),

(dNω)e − dNωe = �Nη and (δNω)e − δNωe = �Nθ,

where η ∈ Ωp+1
0 (N ;K) with supp η ⊆ ψ (M) and θ ∈ Ωp−1

0 (N ;K) with
supp θ ⊆ ψ (M). Further, if ω ∈ Ωp0,d (N ;K)⊕ Ωp0,δ (N ;K), then

ωe = α+ β, (10)

where α ∈ Ωp0,d (N ;K) with suppα ⊆ ψ (M) and β ∈ Ωp0,δ (N ;K) with

suppβ ⊆ ψ (M).

Proof. The first part is a direct consequence of Lem. 6.4. Now suppose that
dNω = 0, then supp (dNLω) ⊆ ψ (M). Using �N = − (dNδN + δNdN ), we
have

ω = ωe +�NLω or equivalently ω + dNδNLω = ωe − δNdNLω

the right-hand side of which is obviously supported in ψ (M). Hence, the
left-hand side of the second equation must have the same support and is in
the kernel of dN . Thus (10) holds for closed ω, and as the same argument
applies to coexact ω, the result is proved. �
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We will now apply these general statements in order to show that Fu
and Fu obey the time-slice axiom. In the proof, we will explicitly construct
the inverses of Fuψ and Fuψ, where ψ ∈ Loc (M ,N) is Cauchy, which will
be helpful when computing a concrete expression for the relative Cauchy
evolution for Fu and Fu. Since functors preserve isomorphisms and Fu =
Q ◦ Fu (where Q : pSympl

K
→ *Alg1 is the quantisation functor) it is

enough to concentrate on the classical universal free F-theory.

Proposition 6.6. For ψ ∈ Loc (M ,N) Cauchy, Fuψ is a pSympl
K
-isomorph-

ism whose inverse is explicitly given by

(Fuψ)
−1

: FuN → FuM , [ω] 7−→ [ψ∗ωe] ,

for any time-slice map of
(

ψ, λ2N ,�N

)

and any representative ω of the equiv-

alence class [ω] ∈
[

Ω2
0 (N ;K)

]

. Thus, both Fu and Fu obey the time-slice
axiom.

Proof. By Lemma 6.3 and Lemma 6.4, the map Ξ : FuN → FuM , [ω] 7−→
[ψ∗ωe], is well-defined, i.e. independent of the representative of [ω] ∈

[

Ω2
0 (N ;K)

]

and the time-slice map chosen (cf. the paragraph after Lemma 6.4). It is not
difficult to check that Ξ is K-linear, symplectic and intertwines with the C-
involution in the case K = C. The computations

(Ξ ◦ (Fuψ)) [ω] = Ξ [ψ∗ω] =
[

ψ∗ (ψ∗ω)e
]

= [ψ∗ψ∗ω] = [ω]

∀ [ω] ∈
[

Ω2
0 (M ;K)

]

,

where we have used Lemma 6.3, and

((Fuψ) ◦ Ξ) [ω] = (Fuψ) [ψ
∗ωe] = [ψ∗ψ

∗ωe] = [ωe] = [ω]

∀ [ω] ∈
[

Ω2
0 (N ;K)

]

show the rest. �

6.3. The relative Cauchy evolution of the universal theory

The explicit inverse computed in Prop. 6.6 allows us to compute the relative
Cauchy evolution for Fu and Fu induced by h ∈ H (M). To this end, let L± :
Ω2

0 (M ;K) → Ω2
0 (M ;K) be time-slice maps for

(

ı+
M

[h] : M+ [h] → M , λ2M ,�M

)

and
(

ı−
M

[h] : M− [h] → M [h], λ2M ,�M [h]

)

respectively and use the symbols

‘e±’ to correspond to L±. Then we have, for any [ω] ∈
[

Ω2
0 (M ;K)

]

,

rceFu

M
[h] [ω] = [(ωe+)e− ] = [ωe+ ]−

[

�M [h]L
−ωe+

]

= [ω] +
[

(�M −�M [h])L
−ωe+

]

,

where we have used the fact that L−ωe+ is compactly supported and hence
[�ML−ωe+ ] = 0. Now �M and �M [h] differ only on the support of h, which

lies outside and to the future of the range of ı−
M

[h], allowing us to replace
L− by Gadv

M [h] (by the last part of Lem. 6.3). Hence

rceFu

M
[h] [ω] = [ω] +

[

(�M −�M [h])G
adv
M [h]ωe+

]

= [ω]−
[

(�M −�M [h])GM [h]ωe+

]

,
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where we have used the fact that Gret
M [h]ωe+ vanishes on the support of h.

This expression is independent of the time-slice map L+, because ωe+ is
fixed modulo the image of �M on smooth differential 2-forms compactly
supported in the image of ı+

M
[h], on which �M and �M [h] agree. Standard

manipulations with smooth differential forms and the equivalence relation
give

rceFu

M
[h] [ω] = [ω]−

[(

δM [h] − δM
)

GM [h]dMωe+

]

, (11)

for any [ω] ∈
[

Ω2
0 (M ;K)

]

. Finally, the relative Cauchy evolution of Fu is
given by the application of the quantisation functor:

rceFu

M
[h] = Q

(

rceFu

M
[h]

)

.

6.4. The failure of dynamical locality for the universal theory

The failure of injectivity demonstrated in subsection 6.3, already shows that
Fu and Fu cannot possibly be dynamically local in the original sense of this
definition [23]. For if ψ ∈ Loc(M ,N) is such that Fuψ is noninjective (e.g.,

as in Example 6.1) then the same holds for f kin
N ;M , which is thereby inequiv-

alent to the (necessarily injective/monic) subobject f dyn
N ;M : Fdyn

u (N ;M) →

FuN . Similarly, in the quantised case, the subobject ϕdyn
N ;M : Fdyn

u (N ;M) →

FuN cannot be equivalent to the non-monic ϕkin
N ;M = Fuψ : Fkin

u (N ;M) =
FuM → FuN .

In this subsection, we show that the failure of dynamical locality for
these theories is even more severe and cannot be achieved even if we restrict
to contractible globally hyperbolic open subsets. There is no harm now in

shifting our focus from the abstract categorical subobjects f kin
M ;O, f

dyn
M ;O, ϕ

kin
M ;O

and ϕdyn
M ;O to the concrete (complexified if K = C) pre-symplectic spaces and

unital *-algebras Fkin
u (M ;O), Fdyn

u (M ;O), Fkin
u (M ;O) and Fdyn

u (M ;O).
Let M ∈ Loc be such that H2

dR (M ;K) 6= 0. By arguments given in
Sect. 6.1, there exists ω ∈ Ω2

0 (M ;K) satisfying dMω = 0 but [ω] 6= 0 ∈
[

Ω2
0 (M ;K)

]

(and hence FM (ω) 6= 0 ∈ FuM). In other words, [ω] corresponds
to a electric topological degeneracy. Lemma 6.5 and (11) give

rceFu

M
[h] [ω] = [ω] ∀h ∈ H(M),

and hence
(

rceFu

M
[h]

)

(FM (ω)) = FM (ω) for all h ∈ H (M). Consequently,

[ω] ∈ F•
u (M ;K) and FM (ω) ∈ F•

u (M ;K) for all K ∈ K (M ;O) and for all
contractible O ∈ O (M). This implies [ω] ∈ Fdyn

u (M ;O) and FM (ω) ∈
Fdyn
u (M ;O) for all contractible O ∈ O (M). As [ω] is in the radical of
the (complexified if K = C) pre-symplectic form on FuM , it follows that
Fdyn
u (M ;O) has a degenerate (complexified if K = C) pre-symplectic form,

while Fkin
u (M ;O) is weakly non-degenerate; thus these two (complexified if

K = C) pre-symplectic spaces cannot possibly be symplectomorphic for any
contractible O ∈ O (M); i.e., dynamical locality fails.

The same is true for the quantised universal free F-theory because, for
every contractible O ∈ O (M), Fdyn

u (M ;O) is not simple, while Fkin
u (M ;O)
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is simple; hence these two unital *-algebras are not unital *-isomorphic. As
far as the dynamical net is concerned, the elements [ω] resp. FM (ω) are local
to all regions.

We have shown that the electric topological degeneracies spoil dynam-
ical locality. This is also true for magnetic topological degeneracies, i.e.,
ω ∈ Ω2

0 (M ;K) satisfying δMω = 0 but [ω] 6= 0 ∈
[

Ω2
0 (M ;K)

]

and FM (ω) 6=
0 ∈ FuM . These are also fixed points under relative Cauchy evolution, which
is not obvious from (11), but can be shown abstractly because electric and
magnetic topological degeneracies are exchanged by the electromagnetic du-
ality rotation Θ(π/2) defined by (8), which is an automorphism of Fu and
therefore commutes with the relative Cauchy evolution [19, Prop. 2.1]. The
application of the quantisation functor yields the analogous result for the
quantised universal free F-theory.

We summarise:

Theorem 6.7. The classical and the quantised universal free F-theory (and
hence also the A-theory) are not dynamically local (even in the weakened
sense obtained by restricting to contractible open globally hyperbolic subsets).

7. Dynamical locality of the reduced theory

In the last section we saw that the classical and the quantised universal free
F-theory (and hence A-theory) fail local covariance and dynamical locality.
However, we were also able to clearly identify what causes this failure, namely
the possibility of having non-trivial radicals in the classical case and non-
trivial centres in the quantum case. The reduced theories are free of these
features and, as we will show, they are dynamically local. We work in the
F-description, but all our statements have analogues in the equivalent A-
description.

7.1. The relative Cauchy evolution of the reduced theory

Having established local covariance, we will now show that the classical and
the quantised reduced free F-theories obey the time-slice axiom. We will
compute their respective relative Cauchy evolutions and differentiate them
with respect to the metric perturbation, thus obtaining the stress-energy
tensor for the classical reduced free F-theory. Since R = Q ◦ R, we can
concentrate on the classical case.

The only difference to the subsections 6.2 and 6.3 is so far the use of
a different equivalence relation and hence different equivalence classes, i.e.
J·K instead of [·]. Assume ψ ∈ Loc (M ,N) is Cauchy and L : Ωp0 (N ;K) →
Ωp0 (N ;K) is a time-slice map for (ψ, λpN ,�N). By Lem. 6.5, ωe = α+ β with
α ∈ Ωp0,d (N ;K) such that suppα ⊆ ψ (M) and β ∈ Ωp0,δ (N ;K) such that

suppβ ⊆ ψ (M) for ω ∈ Ωp0 (M ;K) such that dMω = 0 or δMω = 0. Thus we
can adapt the results of Subsection 6.2 and Subsection 6.3 by just replacing [·]
with J·K. In particular,R andR obey the time-slice axiom and their respective
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relative Cauchy evolutions induced by h ∈ H (M) are given (in the same con-
ventions as in Subsection 6.3; in particular,‘e+’ refers to an arbitrary time-
slice map L+ : Ω2

0 (M ;K) → Ω2
0 (M ;K) for

(

ı+
M

[h] : M+ [h] → M , λ2M ,�M

)

)
by

rceR
M

[h] JωK = JωK+
r
(

δM [h] − δM
)

Gadv
M [h]dMωe+

z
(12)

= JωK−
q(
δM [h] − δM

)

GM [h]dMωe+

y
, JωK ∈

q
Ω2

0 (M ;K)
y
,

and also

rceR
M

[h] = Q
(

rceR
M

[h]
)

. (13)

The intermediate expression in (12) allows us to employ a Born expansion as
in [24, (B.2)],

Gadv
M [h]ω = Gadv

M
ω −Gadv

M

(

�M [h] −�M

)

Gadv
M [h]ω ∀ω ∈ Ω2

0 (M ;K),

in order to further compute:

rceR
M

[h] JωK = JωK+
q(
δM [h] − δM

)

Gadv
M

dMωe+

y

−
r
(

δM [h] − δM
)

Gadv
M

(

�M [h] −�M

)

Gadv
M [h]dMωe+

z
,

JωK ∈
q
Ω2

0 (M ;K)
y
.

Now, suppGret
M
ωe+ ∩ supph = ∅ by construction for any ω ∈ Ω2

0 (M ;K)
and, as δM [h] − δM vanishes outside supph, we can replace Gadv

M
dMωe+ by

−GMdMωe+ = −GMdMω to obtain

rceR
M

[h] JωK = JωK−
r
(

δM [h] − δM
)

(

GMdMω (14)

+Gadv
M

(

�M [h] −�M

)

Gadv
M [h]dMωe+

)z
, JωK ∈

q
Ω2

0 (M ;K)
y
.

For M ∈ Loc, we can associate to each JωK ∈
q
Ω2

0 (M ;K)
y
a solution

of the free Maxwell equations (2) with compact support on smooth spacelike
Cauchy surfaces for M by setting FJωK := dMGMδMω for any representative

ω ∈ Ω2
0 (M ;K). Clearly, all representatives will give rise to the same solution

and if dMGMδMη = FJωK for JηK ∈
q
Ω2

0 (M ;K)
y
, JηK = JωK necessarily. Thus,

in the classical reduced free F-theory, we are only dealing with solutions of (3)
which are of the form dMGMδMω for ω ∈ Ω2

0 (M ;K). Note that all solutions
of the Cauchy problem (3) take this form if M ∈ Loc c© (cf. Subsection 4.2).
This provides a nice interpretation of the relative Cauchy evolution: namely,

dM [h]GM [h]δM [h]

(

R+
M

[h]
)

(

(

Rı+
M

[h]
)−1 JωK

)

= dM [h]GM [h]δM [h]ωe+

is the unique solution of the free Maxwell equations on M [h] which coincides
with FJωK on M+[h] (cf. [24]). The agreement is not difficult to see, the
uniqueness follows from the well-posedness of the Cauchy problem. Then, if
η ∈ Ω2

0 (M ;K) is a representative of rceR
M

[h] JωK, then dMGMδMη is the
unique solution of the free Maxwell equations for the field strength on M

agreeing with dM [h]GM [h]δM [h]ωe+ on M− [h]. This interpretation of the
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relative Cauchy evolution will become very helpful in the proof of Lemma
7.1.

7.2. The stress-energy tensor of the classical modifed theory

To show that R and R are dynamically local, it will be helpful to relate the
relative Cauchy evolution to the stress-energy tensor for the classical reduced
free F-theory. This can be done as follows: taking any compactly supported,
symmetric and smooth tensor field15 h ∈ Γ∞

0 (τ∗M ⊙ τ∗M ), there exists ε > 0
such that th ∈ H (M) for all t ∈ (−ε, ε) (cf. [24, §§2&3]). The relative Cauchy
evolution for R induced by th ∈ H (M) for M ∈ Loc is differentiable in the
weak symplectic topology (cf. [24, §3 & Appx.B]), i.e. there is a K-linear map
HM [h] : RM → RM such that

rM (HM [h] JωK, JηK) = d

dt
rM

(

rceR
M

[th] JωK, JηK
)

∣

∣

∣

t=0
, (15)

JωK, JηK ∈
q
Ω2

0 (M ;K)
y

and the derivative on the right hand side exists for all such JωK, JηK. Note,
HM [h] is called FM [h] in [24], a notation we avoid for obvious reasons.
Inserting (14) and already dropping some terms of order t2 and higher, we
need to compute (up to first order in t)

d

dt
rM

(

rceR
M

[th] JωK, JηK
)

∣

∣

∣

t=0
= lim
t→0
rM

(q
−t−1

(

δM [th] − δM
)

dMGMω
y
, JηK

)

,

= − lim
t→0

∫

M

t−1
(

δM [th] − δM
)

dMGMω ∧ ∗MdMGMδMη,

JωK, JηK ∈
q
Ω2

0 (M ;K)
y
.

(16)

The coderivative δM [th] may be expanded by a lengthy but straightforward
computation (being careful to recall that the inverse metric to g + th is

(g + th)
−1

= g−1 − th♯♯ + O(t2), which reads in abstract index notation
gab − thab +O(t2)):

t−1
((

δM [th] − δM
)

̟
)

cd
= ∇a

(

hab̟bcd

)

−
1

2
(∇bh

a
a)̟

b
cd + (∇ahbc)̟

ab
d

− (∇ahbd)̟
ab
c +O(t), ̟ ∈ Ω3 (M ;K),

where ∇ stands for the Levi-Civita connection with respect to g. This yields

HM [h] JωcdK =
s
−∇a

(

hab (GMdMω)bcd
)

+
1

2
(∇bh

a
a) (GMdMω)

b
cd (17)

− (∇ahbc) (GMdMω)
ab
d + (∇ahbd) (GMdMω)

ab
c

z
,

JωK ∈
q
Ω2

0 (M ;K)
y
,

whose well-definedness can be seen by using the weak non-degeneracy of rM .
In order to bring (16) into a nicer form, we define ̟ := dMGMω ∈ Ω3(M ;K)

15Recall, τ∗
M

denotes the cotangent bundle of the smooth manifold M .
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and FJηK := dMGMδMη. The divergence theorem entails the following iden-
tities

∫

M

∇a
(

hab̟bcd

)

F cdJηK volM = −

∫

M

hab̟bcd∇aF
cd
JηK volM ,

∫

M

(∇bh
a
a)̟

b
cdF

cd
JηK volM = −

∫

M

(

haa∇b
(

̟b
cd

)

F cdJηK + haa̟
b
cd∇bF

cd
JηK

)

volM

and
∫

M

(∇ahbc)̟
ab
dF

cd
JηK volM = −

∫

M

(

hbc (∇a̟
a
bd)F

cd
JηK) + hbc̟

ab
d∇aF

cd
JηK

)

volM ,

where ∇b
(

̟b
cd

)

= − (δM̟)cd = +(dMGMδMω)cd =: FJωKcd; together with
dMFJηK = 0 and

̟b
cd∇bF

cd
JηK volM = ̟bcd∇

[bF
cd]
JηK volM = 3!̟ ∧ ∗MdMFJηK = 0,

they yield overall

rM (HM [h] JωK, JηK) = d

dt
rM

(

rceR
M

[h] JωK, JηK
)

∣

∣

∣

t=0

= −

∫

M

hab

(

1

4
gabFJωKmnF

mn
JηK − gmnF

am
JωKF

bn
JηK

)

volM

= −

∫

M

habT
ab
M

(JωK, JηK) volM ,

JωK, JηK ∈
q
Ω2

0 (M ;K)
y
.

(There is a sign error in the analogous formula [24, Eq. (3.7)], which however
does not alter the main results of that reference.) Here TM (JωK, JηK) is the
polarised form of the stress-energy tensor for the classical reduced free F-
theory on M ∈ Loc

T ab
M

(JωK, JηK) = 1

4
gabFJωKmnF

mn
JηK − gmnF

am
JωKF

bn
JηK, JωK, JηK ∈

q
Ω2

0 (M ;K)
y
,

(18)

where FJωK := dMGMδMω with a representative ω ∈ Ω2
0 (M ;K) for JωK ∈q

Ω2
0 (M ;K)

y
. The same expression (18) is obtained for the stress-energy ten-

sor of the classical universal free F-theory if J·K is replaced with [·].

7.3. Verification of dynamical locality for the reduced theories

We will now prove that the reduced free F-theory R : Loc → Sympl
K
obeys

dynamical locality (hence the same is true for the corresponding reduced
A-theory). To do so, we can work with concrete (complexified if K = C) pre-
symplectic spaces and avoid referring to underlying categorical notions such
as subobjects. We will follow the reasoning of [24] using the stress-energy
tensor of R in order to characterise the dynamical net. The main technical
point of difference is that the field strength tensor satisfies not only the wave
equation but also the free Maxwell equations.
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Lemma 7.1. Let K be any compact subset of M ∈ Loc. Then

R• (M ;K) =
{

JωK ∈ RM | suppTM
(

JωK, JωK
)

⊆ JM (K)
}

=
⋂

h∈Γ∞
0 (τ∗

M
⊙τ∗

M
)

supph⊆K⊥

kerHM [h] , (19)

and also R• (M ;K) =
{

JωK ∈ RM | suppFJωK ⊆ JM (K)
}

.

Proof. Labelling the members of (19) as I, II and III respectively, we will
prove that I ⊆ III ⊆ II ⊆ I. Starting with I ⊆ III, suppose JωK ∈ R• (M ;K).
For h ∈ Γ∞

0 (τ∗
M

⊙ τ∗
M

) with support supph ⊆ K⊥, there is ε > 0 such
that th ∈ H

(

M ;K⊥
)

for all t ∈ (−ε, ε). As rceR
M

[th] JωK = JωK for all

t ∈ (−ε, ε), we have d
dt rM

(

rceR
M

[th] JωK, JηK
) ∣

∣

t=0
= 0 for all JηK ∈ RM .

Hence also rM (HM [h] JωK, JηK) = 0 for all JηK ∈ RM and so by weak non-
degeneracy, JωK ∈ kerHM [h]; as h was arbitrary, we have I ⊆ III. For III ⊆ II,
if

JωK ∈
⋂

h∈Γ∞
0 (τ∗

M
⊙τ∗

M
)

supph⊆K⊥

kerHM [h] ,

then rM

(

HM [h] JωK, JωK
)

= −
∫

M
habT

ab
M

(

JωK, JωK
)

volM = 0 for all h ∈

Γ∞
0 (τ∗

M
⊙ τ∗

M
) with support supph ⊆ K⊥, so suppTM

(

JωK, JωK
)

⊆ JM (K)

as required. Finally, to prove II ⊆ I, we note that suppTM

(

JωK, JωK
)

⊆

JM (K) implies that supp
(

FJωK

)

⊆ JM (K) because the energy density,
which is the sum of the squares of the off-diagonal components of FJωK (in
some local framing), must vanish at each point p 6∈ JM (K). Accordingly,
FJωK is a solution of Maxwell’s equations in the perturbed spacetime M [h]

for every h ∈ H
(

M ;K⊥
)

. Hence, it is the unique solution on M [h] that co-
incides with FJωK onM

+ [h] and also the unique solution on M that coincides

with FJωK on M− [h]. Thus, JωK and rceR
M

[h] JωK give rise to the same solu-

tion of the free Maxwell equations on M which implies rceR
M

[h] JωK = JωK
and consequently JωK ∈ R• (M ;K). The final statement is immediate from
the argument just given. �

Lemma 7.2. For all O ∈ O (M), we have Rkin (M ;O) ⊆ Rdyn (M ;O).

Proof. Let JωK ∈ Rkin (M ;O) and ω ∈ Ω2
0 (M ;K), suppω ⊆ O a repre-

sentative of JωK. Choosing for each x ∈ suppω a Cauchy ball Bx contain-
ing x and taking the Cauchy developments, we have found an open cover
{DM (Bx)}x∈suppω of suppω in M . Since suppω is compact, finitely many

of these sets are enough to cover suppω, say suppω ⊆
⋃n
i=0DM (Bi) with

n ≥ 0.
Let

{

χ, χi | i = 0, . . . , n
}

be a smooth partition of unity subordinated
to the open cover {M \ suppω,DM (Bi) | i = 0, . . . , n} ofM . Defining for all
i ∈ I ωi := χiω ∈ Ω2

0 (M ;K) with suppωi ⊆ DM (Bi) ∩O, we can write ω =
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∑n
i=0 ωi. By construction, suppωi ∈ K (M ;O). As suppTM

(

JωiK , JωiK
)

⊆

JM (suppωi), Lemma 7.1 yields JωiK ∈ R• (M ; suppωi) and hence, JωK =
∑n
i=0 JωiK ∈ Rdyn (M ;O) because Rdyn (M ;O) is the smallest (complexified

if K = C) pre-symplectic subspace of RM containing R• (M ;K) for all
K ∈ K (M ;O). �

The following lemma can be considered as an analogue to [24, Lem.3.1.]
and is integral to the proof that the kinematical and the dynamical nets
coincide.

Lemma 7.3. Let M ∈ Loc and K ⊆ O ∈ O (M) compact. There exists
χ ∈ C∞(M) such that every solution F ∈ Ω2 (M,K) of Maxwell’s equations
with suppF ⊆ JM (K) can be written as F = GM�MχF , where �MχF ∈
Ω2

0 (M ;K), δMχF ∈ Ω1
0 (M,K) and dMχF ∈ Ω3

0 (M,K) are supported in O.

Proof. The proof works in exactly the same way as that of [24, Lem.3.1(i)].
The additional point is that due to dMF = 0 and δMF = 0, the Leibniz rule
gives dMχF = 0 and δMχF = 0 outside of the compact set K0 ⊆ O defined
in [24, Lem.3.1(i)], and are thereby compactly supported in O. �

Recall from Section 5 that for M ∈ Loc and O ∈ O (M), Rdyn (M ;O)
is the (complexified if K = C) pre-symplectic subspace of RM generated by
⋃

K∈K (M ;O) R
• (M ;K).

Lemma 7.4. For all O ∈ O (M), we have Rdyn (M ;O) ⊆ Rkin (M ;O).

Proof. We have to show that for each K ∈ K (M ;O), JωK ∈ R• (M ;K)
has a representative η ∈ Ω2

0 (M ;K) with supp η ⊆ O. By Lemma 7.1, we
have supp dMGMδMω ⊆ JM (K) for any representative ω ∈ Ω2

0 (M ;K) of
JωK. Now, by definition of K (M ;O), K has a neighbourhood comprising
finitely many causally disjoint diamonds {DM (Bi)}i=0,...,n, n ≥ 0, based in

smooth spacelike Cauchy surfaces for M such that the bases {Bi}i=0,...,n

are contained in O. Note that these diamonds might not be entirely con-
tained in O. Hence,

{

DM |O (Bi)
}

i=0,...,n
are globally hyperbolic open sub-

sets of both M |O and M , which are furthermore contractible. Because of
the causal disjointness, their (disjoint) union U :=

⊔n
i=0DM |O (Bi) is a glob-

ally hyperbolic open subset of M |O and M , contains16 K and each con-
nected component is contractible. We apply Lemma 7.3 to U and find that
F := dMGMδMω = GM�MχF = −GMδMdMχF −GMdMδMχF , where
dMχF ∈ Ω3

0 (M ;K) and δMχF ∈ Ω1
0 (M ;K) are compactly supported in

U . Since each connected component of U is contractible, there are η1, η2 ∈
Ω2

0 (M ;K) with supp η1, supp η2 ⊆ U satisfying the equalities dMχF = dMη1
and δMχF = δMη2. Thus, dMGMδMω = dMGMδM (η1 − η2), which shows
JωK = Jη1 − η2K. Accordingly, η := η1 − η2 ∈ Ω2

0 (M ;K) is a representative of
JωK that is compactly supported in O (because η is compactly supported in
U ⊆ O). �

16DM |O
(Bi) = DM (Bi) ∩O for i = 0, . . . , n because O is causally convex in M .
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Combining Lemma 7.2 and Lemma 7.4, the main statement of this sub-
section follows:

Theorem 7.5. The classical reduced theory of the free Maxwell field is dynam-
ically local.

From Theorem 7.5, we may deduce that the quantised reduced free F-
theory R : Loc → *Alg

m
1 (and hence the quantised reduced free A-theory)

is dynamically local:

Corollary 7.6. The quantised reduced theory of the free Maxwell field obeys
dynamical locality.

Proof. R = Q ◦ R with the quantisation functor Q : pSymplm
K

→ *Alg
m
1

and as a result of that we need to check (L 1− L 4) of [24, p.1688]:

(L 1) The relative Cauchy evolution ofR is differentiable in the weak symplec-
tic topology as in (15), and the resulting maps obey (the sign appears
incorrectly in [24])

rM

(

HM [h] JωK, JωK
)

= −

∫

M

habT
ab
M

(

JωK, JωK
)

volM ,

JωK ∈
q
Ω2

0 (M ;K)
y
, h ∈ H (M ;O), O ∈ O (M), M ∈ Loc,

where TM

(

JωK, JωK
)

∈ Γ∞ (τM ⊙ τM ) for each JωK ∈
q
Ω2

0 (M ;K)
y
and

M ∈ Loc.
(L 2) For eachO ∈ O (M) containing supph of h ∈ Γ∞

0 (τ∗
M

⊙ τ∗
M

), imgHM [h]
can be identified with a subset of Rkin (M ;O).

(L 3) R obeys extended locality, i.e. Rkin (M ;O1)∩Rkin (M ;O2) = 0 ∈ RM

for spacelike separated O1, O2 ∈ O (M), M ∈ Loc.

(L 4) R• (M ;K) =
⋂

h∈Γ∞
0 (τ∗

M
⊙τ∗

M
)

supph⊆K⊥

kerHM [h] for K compact in M ∈ Loc.

(L 1) is obvious from what was done in Subsection 7.2. For M ∈ Loc, the
image of HM [h], where h ∈ Γ∞

0 (τ∗
M

⊙ τ∗
M

), can be identified with a subset
of Rkin (M ;O) for each O ∈ O (M) with supph ⊆ O ∈ O (M) by (17). (L 3)
is obvious and (L 4) is proven by Lemma 7.1. Hence, [24, Thm.5.3]17 applies
and proves the result. �

8. Discussion

8.1. Summary

In this paper, we have discussed the notion of dynamical locality for the
free Maxwell field. Describing the quantum field theory in terms of the uni-
versal algebra of the unital ∗-algebras of smeared quantum field (cf. [14]),
and describing the classical field theory by the equivalent for (complexified

17The sign error in [24] does not affect the validity of this result because the focus is on
solutions with vanishing stress-energy tensor.
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if K = C) pre-symplectic spaces, we showed that the classical and the quan-
tised universal theories, given by functors Fu,Au : Loc → pSympl

K
and

Fu,Au : Loc → *Alg
m
1 , fail dynamical locality due to Loc-objects M with

H2
dR (M ;K) 6= 0. However, we were able to modify the classical and the

quantised universal F -theory to obtain locally covariant and dynamically lo-
cal theories R : Loc → Sympl

K
and R : Loc → *Alg

m
1 . In establishing this,

we have used the same chain of arguments as [24] for the free real scalar field.
To conclude, we discuss three aspects in more detail, namely the status

of dynamical locality, the categorical structure underlying some of our con-
structions, and the relation of our present work to the discussions of SPASs
in [23, 24].

8.2. Dynamical locality

Our present results on the free Maxwell field contribute to the emerging
picture of dynamical locality as follows. The failure of dynamical locality
for the universal free F-theory can be traced to the existence of topologi-
cal charges present whenever the second de Rham cohomology is non-trivial.
These observables are invariant under all relative Cauchy evolutions and so
are common to every element of the dynamical net, which does not distin-
guish between observables that are local to every region and “observables
that are localised at infinity”. Actually, these observables can have unusual
spatial localisation as well: it is possible for such an element to be common
to spacelike separated elements of the kinematic net, giving a failure of ex-
tended locality [43, 36]. In the quantum field theory, the topological charges
are central elements which parameterise different superselection sectors of
the theory [44, 1], again underlining their global nature. By contrast, the
reduced F-theory of the free Maxwell field in n = 4 dimensions provides
a well-behaved locally covariant and dynamically local theory (at the cost
of giving up topological observables labelled by the first and the second de
Rham cohomology group with compact supports). Overall, dynamical local-
ity appears to be a reasonable expectation for theories of local observables,
but to fail where theories admit observables of an essentially global nature
that are stabilised by topological or other constraints.

8.3. Categorical structures

A number of ideas concerning the ‘universal’ and the ‘reduced’ theory for
the classical and the quantised free Maxwell field can be put in a broader
categorical context. The details of the following discussion have been worked
out and will appear in B.L.’s forthcoming Ph.D. thesis.

For each M = (M, g, o, t) ∈ Loc, we can consider the category JM

whose objects are those N = (N, gN , oN , tN ) ∈ Loc c© such that N ⊆ M
is a globally hyperbolic open subsets (excluding N = M if M ∈ Loc c©),
gN = g|N , oN = o|N and tN = t|N ; the morphisms in JM are the inclusion
maps. We can thus restrict each of the functors F,A : Loc c© → *Alg

m
1 to

JM and obtain functors FM ,AM : JM → *Alg
m
1 . The universal algebras

FuM and AuM are now precisely the universal objects of the colimits (see
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[39, Sec.2.5], [9, Sec.2.6] or [38, Sec.III.3] for this categorical notion) for the
functors FM and AM but viewed as functors FM ,AN : JM → *Alg1. Here, it
is crucial to drop the restriction to injective unital *-homomorphisms, because
*Alg1 is cocomplete, i.e. the colimit for any functor from any small category to
*Alg1 always exists, while *Alg

m
1 is not; in fact, the colimits for FM and AM do

not exist in *Alg
m
1 for generalM . This justifies the use of the term ‘universal’.

At this point, we get the functorial property of Fu,Au : Loc → *Alg1 for
free because they necessarily turn out to be the left Kan extensions (see [9,
Sec.3.7] or [38, Chap.X]) of F,A : Loc c© → *Alg1 (again, one must work in
*Alg1 rather than *Alg

m
1 ). Hence, from this categorical point of view, the

universal theories of the quantised free Maxwell field are highly distinguished
extensions of the quantum field theories on contractible curved spacetimes.

The notion of a colimit and a left Kan extension also make sense for the
categories pSympl

K
, pSymplm

K
and Sympl

K
, but none of these three cate-

gories is cocomplete. However, it can be shown that the functors FM ,AM :
JM → pSympl

K
have colimits whose universal objects are precisely FuM

and AuM respectively, and that Fu,Au : Loc → pSympl
K
are the left Kan

extensions of F ,A : Loc c© → pSympl
K
. Moreover, the relations Q (FuM) =

FuM and Q (AuM) = AuM can be understood as special cases of a gen-
eral result. Although the colimits for FM ,AM : JM → pSymplm

K
(or

Sympl
K
) do not exist, the non-existence of colimits does not rule out the

existence of left Kan extensions and it would be indeed interesting to know
if F,A : Loc c© → *Alg

m
1 and F ,A : Loc c© → pSympl

K
(or Sympl

K
) have

left Kan extensions in *Alg
m
1 and pSympl

K
(or Sympl

K
). If they do exist,

the resulting theories would be distinguished as the minimal locally covariant
extensions of the theory on contractible curved spacetimes; while we have not
reached a conclusion on the question of existence, it can however be shown
that if these extensions exist, they would coincide with the reduced theories.

8.4. Theories of the free Maxwell field and SPASs

The models for the free Maxwell field in curved spacetimes studied in this
paper provide a new viewpoint on the issue of the same physics in all space-
times (SPASs), in relation to locally covariant (quantum field) theories that
can be regarded as extensions of others. The locally covariant theories Fu and
R (resp., Fu and R) coincide on all spacetimes (of dimension n = 4) with
trivial second de Rham cohomology group. To be specific, let Loc2 be the
full subcategory of Loc formed by the spacetimes M with H2

dR(M ;K) = 0,
and let K : Loc2 → Loc be the inclusion functor. Then there are natural
isomorphisms Fu ◦K→̇R ◦K and Fu ◦K→̇R ◦K. However, the locally co-
variant theories are not equivalent on Loc and it is evidently not tenable to
regard both the universal and reduced F-theory of the free Maxwell field as
each representing the same physics in all spacetimes according to a common
notion.
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As far as we are aware, there is no way of embedding the reduced free F-
theory as a subtheory of its universal cousin.18 However, it would be natural
to regard the universal free F-theory as an extension of its reduced counter-
part. On the classical level we have a short left exact sequence

0
·

−→ radwu
·

−−→
m

Fu
·

−−→
e

R,

of functors from Loc to pSympl
K
, where all components of e are epic. Here,

0 denotes the constant functor returning the zero (complexified if K = C)
pre-symplectic space and radwu is the functor assigning the radical radwuM

(equipped with the zero (complexified if K = C) pre-symplectic form) to each
M ∈ Loc, and with morphisms obtained by restriction from Fu. The com-
ponents of m, which are given by the inclusion maps of radwuM into Fu,
are necessarily monic. As pSympl

K
lacks a zero object,19 it is not possi-

ble to write a short exact sequence, and we have to insist on e being epic
separately. Applying the quantisation functor, we obtain a similar short left
exact sequence in the quantum case. In general, we could consider any se-

quence C
·

−−→
m

B
·

−−→
e

A with monic m and epic e as indicating that B is an

extension of A (by C), where A,B, C : Loc → Phys (for these purposes, we
would allow Phys to admit non-monic morphisms). One may then formulate
a version of the SPASs property to cover extensions: a class T of theories
Loc → Phys has the SPASs property for extensions if, whenever A,B ∈ T

and B is an extension of A so that e is a partial natural isomorphism, then e
is a natural isomorphism. It would be very interesting to know whether the
class of dynamically local theories satisfies this version of SPASs in addition
to the subtheory version studied in [23]. Our results on the free Maxwell field
studied here are certainly consistent with a positive answer to that question.
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