79 research outputs found

    Ubiq-Genie: Leveraging External Frameworks for Enhanced Social VR Experiences

    Get PDF
    This paper describes the Ubiq-Genie framework for integrating external frameworks with the Ubiq social VR platform. The proposed architecture is modular, allowing for easy integration of services and providing mechanisms to offload computationally intensive processes to a server. To showcase the capabilities of the framework, we present two prototype applications: 1) a voice- and gesturecontrolled texture generation method based on Stable Diffusion 2.0 and 2) an embodied conversational agent based on ChatGPT. This work aims to demonstrate the potential of integrating external frameworks into social VR for the creation of new types of collaborative experiences

    Towards Outdoor Collaborative Mixed Reality: Lessons Learnt from a Prototype System

    Get PDF
    Most research on collaborative mixed reality (CMR) has focused on indoor spaces. In this paper, we present our ongoing work aimed at investigating the potential of CMR in outdoor spaces. These spaces present unique challenges due to their larger and more complex nature, particularly in terms of reconstruction, tracking, and interaction. Our prototype system utilises a photorealistic model to facilitate collaboration between remote virtual reality (VR) users and a local augmented reality (AR) user. We discuss our design considerations, lessons learnt, and areas for future work

    Genetic diversity and recombination between turnip yellows virus strains in Australia

    Get PDF
    Disease outbreaks caused by turnip yellows virus (TuYV), a member of the genus Polerovirus, family Luteoviridae, regularly occur in canola and pulse crops throughout Australia. To understand the genetic diversity of TuYV for resistance breeding and management, genome sequences of 28 TuYV isolates from different hosts and locations were determined using high-throughput sequencing (HTS). We aimed to identify the parts of the genome that were most variable and clarify the taxonomy of viruses related to TuYV. Poleroviruses contain seven open reading frames (ORFs): ORF 0–2, 3a, and 3–5. Phylogenetic analysis based on the genome sequences, including isolates of TuYV and brassica yellows virus (BrYV) from the GenBank database, showed that most genetic variation among isolates occurred in ORF 5, followed by ORF 0 and ORF 3a. Phylogenetic analysis of ORF 5 revealed three TuYV groups; P5 group 1 and group 3 shared 45–49% amino acid sequence identity, and group 2 is a recombinant between the other two. Phylogenomic analysis of the concatenated ORFs showed that TuYV is paraphyletic with respect to BrYV, and together these taxa form a well-supported monophyletic group. Our results support the hypothesis that TuYV and BrYV belong to the same species and that the phylogenetic topologies of ORF 0, 3a and 5 are incongruent and may not be informative for species demarcation. A number of beet western yellow virus (BWYV)- and TuYV-associated RNAs (aRNA) were also identified by HTS for the first time in Australia

    A study of professional awareness using immersive virtual reality: the responses of general practitioners to child safeguarding concerns

    Get PDF
    The art of picking up signs that a child may be suffering from abuse at home is one of those skills that cannot easily be taught, given its dependence on a range of non-cognitive abilities. It is also difficult to study, given the number of factors that may interfere with this skill in a real-life, professional setting. An immersive virtual reality environment provides a way round these difficulties. In this study, we recruited 64 general practitioners (GPs), with different levels of experience. Would this level of experience have any impact on general practitioners’ ability to pick up child-safeguarding concerns? Would more experienced GPs find it easier to pick up subtle (rather than obvious) signs of child-safeguarding concerns? Our main measurement was the quality of the note left by the GP at the end of the virtual consultation: we had a panel of 10 (all experienced in safeguarding) rate the note according to the extent to which they were able to identify and take the necessary steps required in relation to the child safeguarding concerns. While the level of professional experience was not shown to make any difference to a GP’s ability to pick up those concerns, the parent’s level of aggressive behavior toward the child did. We also manipulated the level of cognitive load (reflected in a complex presentation of the patient’s medical condition): while cognitive load did have some impact upon GPs in the “obvious cue” condition (parent behaving particularly aggressively), this effect fell short of significance. Furthermore, our results also suggest that GPs who are less stressed, less neurotic, more agreeable and extroverted tend to be better at raising potential child abuse issues in their notes. These results not only point at the considerable potential of virtual reality as a training tool, they also highlight fruitful avenues for further research, as well as potential strategies to support GP’s in their dealing with highly sensitive, emotionally charged situations

    Strong gravitational lensing probes of the particle nature of dark matter

    Full text link
    There is a vast menagerie of plausible candidates for the constituents of dark matter, both within and beyond extensions of the Standard Model of particle physics. Each of these candidates may have scattering (and other) cross section properties that are consistent with the dark matter abundance, BBN, and the most scales in the matter power spectrum; but which may have vastly different behavior at sub-galactic "cutoff" scales, below which dark matter density fluctuations are smoothed out. The only way to quantitatively measure the power spectrum behavior at sub-galactic scales at distances beyond the local universe, and indeed over cosmic time, is through probes available in multiply imaged strong gravitational lenses. Gravitational potential perturbations by dark matter substructure encode information in the observed relative magnifications, positions, and time delays in a strong lens. Each of these is sensitive to a different moment of the substructure mass function and to different effective mass ranges of the substructure. The time delay perturbations, in particular, are proving to be largely immune to the degeneracies and systematic uncertainties that have impacted exploitation of strong lenses for such studies. There is great potential for a coordinated theoretical and observational effort to enable a sophisticated exploitation of strong gravitational lenses as direct probes of dark matter properties. This opportunity motivates this white paper, and drives the need for: a) strong support of the theoretical work necessary to understand all astrophysical consequences for different dark matter candidates; and b) tailored observational campaigns, and even a fully dedicated mission, to obtain the requisite data.Comment: Science white paper submitted to the Astro2010 Decadal Cosmology & Fundamental Physics Science Frontier Pane

    Global assessment of marine plastic exposure risk for oceanic birds

    Get PDF
    Plastic pollution is distributed patchily around the world’s oceans. Likewise, marine organisms that are vulnerable to plastic ingestion or entanglement have uneven distributions. Understanding where wildlife encounters plastic is crucial for targeting research and mitigation. Oceanic seabirds, particularly petrels, frequently ingest plastic, are highly threatened, and cover vast distances during foraging and migration. However, the spatial overlap between petrels and plastics is poorly understood. Here we combine marine plastic density estimates with individual movement data for 7137 birds of 77 petrel species to estimate relative exposure risk. We identify high exposure risk areas in the Mediterranean and Black seas, and the northeast Pacific, northwest Pacific, South Atlantic and southwest Indian oceans. Plastic exposure risk varies greatly among species and populations, and between breeding and non-breeding seasons. Exposure risk is disproportionately high for Threatened species. Outside the Mediterranean and Black seas, exposure risk is highest in the high seas and Exclusive Economic Zones (EEZs) of the USA, Japan, and the UK. Birds generally had higher plastic exposure risk outside the EEZ of the country where they breed. We identify conservation and research priorities, and highlight that international collaboration is key to addressing the impacts of marine plastic on wide-ranging species

    Global assessment of marine plastic exposure risk for oceanic birds

    Get PDF
    Plastic pollution is distributed patchily around the world’s oceans. Likewise, marine organisms that are vulnerable to plastic ingestion or entanglement have uneven distributions. Understanding where wildlife encounters plastic is crucial for targeting research and mitigation. Oceanic seabirds, particularly petrels, frequently ingest plastic, are highly threatened, and cover vast distances during foraging and migration. However, the spatial overlap between petrels and plastics is poorly understood. Here we combine marine plastic density estimates with individual movement data for 7137 birds of 77 petrel species to estimate relative exposure risk. We identify high exposure risk areas in the Mediterranean and Black seas, and the northeast Pacific, northwest Pacific, South Atlantic and southwest Indian oceans. Plastic exposure risk varies greatly among species and populations, and between breeding and non-breeding seasons. Exposure risk is disproportionately high for Threatened species. Outside the Mediterranean and Black seas, exposure risk is highest in the high seas and Exclusive Economic Zones (EEZs) of the USA, Japan, and the UK. Birds generally had higher plastic exposure risk outside the EEZ of the country where they breed. We identify conservation and research priorities, and highlight that international collaboration is key to addressing the impacts of marine plastic on wide-ranging species

    Application of Loop-Mediated Isothermal Amplification in an Early Warning System for Epidemics of an Externally Sourced Plant Virus

    No full text
    Restricting Turnip yellows virus (TuYV) spread in canola (Brassica napus) crops often relies upon the application of systemic insecticides to protect young vulnerable plants from wide-scale green-peach aphid (GPA; Myzus persicae) colonization and subsequent virus infection. For these to be applied at the optimal time to ensure they prevent epidemics, growers would need to be forewarned of incoming viruliferous aphid migration and colonization. This study was conducted to field validate a loop-mediated isothermal amplification (LAMP) protocol designed to detect TuYV in aphids caught on traps and develop an early warning system for TuYV epidemics. Double-sided yellow sticky traps were deployed at 30 sites sown with canola over a two-year period in the south-west Australian grainbelt. Using LAMP, the percentage (%) of trap sides with TuYV-carrying aphids was measured and related to TuYV infection incidence in the adjacent crop. When TuYV was detected in aphids on >30% trap sides in a six-week period from pre-emergence to GS15 (five-leaf stage), TuYV reached >60% crop incidence by GS30 (beginning of stem elongation). Whereas, TuYV detection in aphids on ≤15% trap sides during this period was associated with ≤6% TuYV incidence by GS30. Furthermore, when large numbers of aphids, including GPA, were caught during this period but no TuYV was detected in them, minimal TuYV spread (≤5%) occurred in the crop by GS30. Therefore, the LAMP TuYV protocol can be used in an early warning system for TuYV epidemics by providing detection of initial viruliferous aphid migration into a canola crop before they establish colonies throughout the crop and spread virus. This would enable proactive, non-prophylactic, and thereby more effective systemic insecticide applications to minimize seed yield and quality losses due to early season TuYV infection

    Redirected Walking in Obstacle-Rich Virtual Environments

    No full text
    Virtual reality (VR) systems allow a user to explore virtual environments (VEs) intuitively by linking display and interaction to physical movements in the real world. Walking is an intuitive method of traversal, but challenging for VR; VEs do not need to match physical spaces, so users may encounter obstacles in the real world. Redirected walking (RDW) is a technique which remaps a user’s physical walk onto a subtly different virtual path. The user then unknowingly adjusts their physical path to account for the change. With carefully selected transformations the user can be steered away from physical obstacles, allowing free walking in the VE. However, state of the art RDW techniques still require a large amount of physical space. The work in this thesis aims to reduce physical space requirements for RDW techniques. Certain RDW tasks such as infinite straight-line walking require large amounts of physical space due to perceptual limits. However, VEs which contain obstacles may not contain long straight paths and can be analysed to provide useful information about future user walk directions. This research therefore focuses specifically on the application of RDW in obstacle-rich VEs to small physical spaces. We present the following contributions on this theme: (1) MCRDW, a gain selection algorithm for RDW which uses simulated walks to anticipate future user trajectories, (2) a psychophysical study on tolerance to rate of gain change, the results of which indicate that slow gain change is significantly harder to detect than sudden gain change, and (3) Shared Spaces, a multi-user technique to allow users to share spaces virtually while allowing real walking locally
    corecore