163 research outputs found
Rheo-PIV Investigation of Fracture and Self-Healing in a Triblock Copolymer Gel
Physically associating polymer gels have shown the ability to heal after failure, making them promising candidates for various medical applications or consumer products. However, the processes by which these materials self-heal is not well-understood. This study seeks to explain the self-healing behavior of the triblock copolymer poly(methyl methacrylate)-poly(n-butyl acrylate)-poly(methyl methacrylate), or PMMA-PnBA-PMMA, by probing the material’s post-fracture behavior with rheometry and particle image velocimetry (PIV). The self-healing behavior was studied by deforming each gel in shear until failure multiple times with “recovery” periods in-between. PIV was used to verify the occurrence of each fracture in both time and space. Stress relaxation experiments were also performed on the gels to give greater context to the results of the investigation into fracture recovery. Using these data, it was possible to determine the activation energy required for the network chain dissociation and re-association that transpires during the deformation and self-healing of the gel. Stress relaxation experiments yielded an activation energy of 359 kJ/mole for chain dissociation, while fracture-recovery experiments produced an activation energy of 439 kJ/mole for chain re-association. Building upon these insights could lead to a better understanding of the microscopic mechanisms that govern the behavior of intrinsic self-healing materials so that they can be used to their full potential
Fragmentation Dynamics of Small Molecules upon Multiple Ionization by X-Ray Free-Electron Laser Pulses
The ionization and fragmentation dynamics of small molecules (CH3SeH, C2H5SeH,
CH3I, and ICl) triggered by intense ultrashort soft X-ray pulses delivered by the Linac
Coherent Light Source are investigated employing coincident three-dimensional ion momentum
spectroscopy.
This work aims at investigating the role of the molecular environment in multiple inner-shell photoionization and the accompanying electronic relaxation processes by studying
molecular systems containing a single constituent of high nuclear charge Z, i.e. selenium
or iodine, such that photoabsorption is almost exclusively localized at the core-shells of
these heavy atoms. By comparing the level of ionization for the molecules containing selenium
or iodine with results on isolated krypton and xenon atoms, signatures of efficient
charge redistribution within the molecular environment are observed. Measured kinetic
energies and angular distributions of the ionic fragments in comparison to the outcome
of a simple Coulomb explosion model allow tracking down the evolution of the molecular
geometry, revealing considerable displacement of the nuclei on the time scale of sequential
multiple ionization. The results obtained have considerable implications for coherent
diffractive imaging, providing a direct measure of radiation damage (displacement of nuclei
and electronic rearrangement) on the time scale of the X-ray pulse and the length scale of
the individual atoms
Photophysics of indole upon x-ray absorption
A photofragmentation study of gas-phase indole (CHN) upon
single-photon ionization at a photon energy of 420 eV is presented. Indole was
primarily inner-shell ionized at its nitrogen and carbon orbitals.
Electrons and ions were measured in coincidence by means of velocity map
imaging. The angular relationship between ionic fragments is discussed along
with the possibility to use the angle-resolved coincidence detection to perform
experiments on molecules that are strongly oriented in their recoil-frame. The
coincident measurement of electrons and ions revealed
fragmentation-pathway-dependent electron spectra, linking the structural
fragmentation dynamics to different electronic excitations. Evidence for
photoelectron-impact self-ionization was observed.Comment: 11 pages, 6 figure
Progress and Poverty—1965 Version
The first hard X-ray laser, the Linac Coherent Light Source (LCLS), produces 120 shots per second. Particles injected into the X-ray beam are hit randomly and in unknown orientations by the extremely intense X-ray pulses, where the femtosecond-duration X-ray pulses diffract from the sample before the particle structure is significantly changed even though the sample is ultimately destroyed by the deposited X-ray energy. Single particle X-ray diffraction experiments generate data at the FEL repetition rate, resulting in more than 400,000 detector readouts in an hour, the data stream during an experiment contains blank frames mixed with hits on single particles, clusters and contaminants. The diffraction signal is generally weak and it is superimposed on a low but continually fluctuating background signal, originating from photon noise in the beam line and electronic noise from the detector. Meanwhile, explosion of the sample creates fragments with a characteristic signature. Here, we describe methods based on rapid image analysis combined with ion Time-of-Flight (ToF) spectroscopy of the fragments to achieve an efficient, automated and unsupervised sorting of diffraction data. The studies described here form a basis for the development of real-time frame rejection methods, e. g. for the European XFEL, which is expected to produce 100 million pulses per hour. (C)2014 Optical Society of Americ
High-repetition-rate and high-photon-flux 70 eV high-harmonic source for coincidence ion imaging of gas-phase molecules
Unraveling and controlling chemical dynamics requires techniques to image
structural changes of molecules with femtosecond temporal and picometer spatial
resolution. Ultrashort-pulse x-ray free-electron lasers have significantly
advanced the field by enabling advanced pump-probe schemes. There is an
increasing interest in using table-top photon sources enabled by high-harmonic
generation of ultrashort-pulse lasers for such studies. We present a novel
high-harmonic source driven by a 100 kHz fiber laser system, which delivers
10 photons/s in a single 1.3 eV bandwidth harmonic at 68.6 eV. The
combination of record-high photon flux and high repetition rate paves the way
for time-resolved studies of the dissociation dynamics of inner-shell ionized
molecules in a coincidence detection scheme. First coincidence measurements on
CHI are shown and it is outlined how the anticipated advancement of fiber
laser technology and improved sample delivery will, in the next step, allow
pump-probe studies of ultrafast molecular dynamics with table-top XUV-photon
sources. These table-top sources can provide significantly higher repetition
rates than the currently operating free-electron lasers and they offer very
high temporal resolution due to the intrinsically small timing jitter between
pump and probe pulses
High Harmonic Generation in Mixed Xuv and Nir Fields at a Free-Electron Laser
We Present the Results of an Experiment Investigating the Generation of High-Order Harmonics by a Femtosecond Near-Infrared (NIR) Laser Pulse in the Presence of an Extreme Ultraviolet (XUV) Field Provided by a Free-Electron Laser (FEL), a Process Referred to as XUV-Assisted High-Order Harmonic Generation (HHG). Our Experimental Findings Show that the XUV Field Can Lead to a Small Enhancement in the Harmonic Yield When the XUV and NIR Pulses overlap in Time, while a Strong Decrease of the HHG Yield and a Red Shift of the HHG Spectrum is Observed When the XUV Precedes the NIR Pulse. the Latter Observations Are in Qualitative Agreement with Model Calculations that Consider the Effect of a Decreased Number of Neutral Emitters but Are at Odds with the Predicted Effect of the Correspondingly Increased Ionization Fraction on the Phase Matching. Our Study Demonstrates the Technical Feasibility of XUV-Assisted HHG Experiments at FELs, Which May Provide New Avenues to Investigate Correlation-Driven Electron Dynamics as Well as Novel Ways to Study and Control Propagation Effects and Phase Matching in HHG
Multiple-core-hole resonance spectroscopy with ultraintense X-ray pulses
Understanding the interaction of intense, femtosecond X-ray pulses with heavy
atoms is crucial for gaining insights into the structure and dynamics of
matter. One key aspect of nonlinear light-matter interaction was, so far, not
studied systematically at free-electron lasers -- its dependence on the photon
energy. Using resonant ion spectroscopy, we map out the transient electronic
structures occurring during the complex charge-up pathways. Massively hollow
atoms featuring up to six simultaneous core holes determine the spectra at
specific photon energies and charge states. We also illustrate how the
influence of different X-ray pulse parameters that are usually intertwined can
be partially disentangled. The extraction of resonance spectra is facilitated
by the fact that the ion yields become independent of the peak fluence beyond a
saturation point. Our study lays the groundwork for novel spectroscopies of
transient atomic species in exotic, multiple-core-hole states that have not
been explored previously.Comment: Supplementary information is include
Recommended from our members
Time-resolved site-selective imaging of predissociation and charge transfer dynamics: The CH3I B-band
The predissociation dynamics of the 6s (B2E) Rydberg state of gas-phase CH3I were investigated by time-resolved Coulomb-explosion imaging using extreme ultraviolet (XUV) free-electron laser pulses. Inner-shell ionization at the iodine 4d edge was utilized to provide a site-specific probe of the ensuing dynamics. The combination of a velocity-map imaging (VMI) spectrometer coupled with the pixel imaging mass spectrometry (PImMS) camera permitted three-dimensional ionic fragment momenta to be recorded simultaneously for a wide range of iodine charge states. In accord with previous studies, initial excitation at 201.2 nm results in internal conversion and subsequent dissociation on the lower-lying A-state surface on a picosecond time scale. Examination of the time-dependent yield of low kinetic energy iodine fragments yields mechanistic insights into the predissociation and subsequent charge transfer following multiple ionization of the iodine products. The effect of charge transfer was observed through differing delay-dependencies of the various iodine charge states, from which critical internuclear distances for charge transfer could be inferred and compared to a classical over-the-barrier model. Time-dependent photofragment angular anisotropy parameters were extracted from the central slice of the Newton sphere, without Abel inversion, and highlight the effect of rotation of the parent molecule before dissociation, as observed in previous © 2020 The Author(s). Published by IOP Publishing Ltd Printed in the U
- …