230 research outputs found

    Plasmacytoid dendritic cells are increased in cerebrospinal fluid of untreated patients during multiple sclerosis relapse

    Get PDF
    The plasmacytoid dendritic cells (pDCs) express a high level of Toll-like receptor 9 (TLR-9), which recognizes viral DNA. Activated via TLR-9, pDCs also secrete large amounts of type I interferon which are involved either in stimulation or down regulation of immune response in multiple sclerosis (MS). In the present study, we determinate pDCs levels by flow cytometry in Cerebrospinal Fluid (CSF) and Peripheral Blood from MS patients in relapsing and in remitting phases of the disease, comparing with other non-inflammatory diseases (OND). We provide evidence that MS patients in relapse without any treatment have a significantly (p < 0.01) higher percentage of pDCs in CSF than do patients in remission or those with OND. No change in the percentage of pDCs was observed in the peripheral blood of any of these patients. The increase of pDCs in central nervous system during relapse may be explained either by a virus infection or a down regulatory process

    An Objective Scatter Index Based on Double-Pass Retinal Images of a Point Source to Classify Cataracts

    Get PDF
    PURPOSE: To propose a new objective scatter index (OSI) based in the analysis of double-pass images of a point source to rank and classify cataract patients. This classification scheme is compared with a current subjective system. METHODS: We selected a population including a group of normal young eyes as control and patients diagnosed with cataract (grades NO2, NO3 and NO4) according to the Lens Opacities Classification System (LOCS III). For each eye, we recorded double-pass retinal images of a point source. In each patient, we determined an objective scatter index (OSI) as the ratio of the intensity at an eccentric location in the image and the central part. This index provides information on the relevant forward scatter affecting vision. Since the double-pass retinal images are affected by both ocular aberrations and intraocular scattering, an analysis was performed to show the ranges of contributions of aberrations to the OSI. RESULTS: We used the OSI values to classify each eye according to the degree of scatter. The young normal eyes of the control group had OSI values below 1, while the OSI for subjects in LOCS grade II were around 1 to 2. The use of the objective index showed some of the weakness of subjective classification schemes. In particular, several subjects initially classified independently as grade NO2 or NO3 had similar OSI values, and in some cases even higher than subjects classified as grade NO4. A new classification scheme based in OSI is proposed. CONCLUSIONS: We introduced an objective index based in the analysis of double-pass retinal images to classify cataract patients. The method is robust and fully based in objective measurements; i.e., not depending on subjective decisions. This procedure could be used in combination with standard current methods to improve cataract patient surgery scheduling

    Gene expression patterns associated with p53 status in breast cancer

    Get PDF
    BACKGROUND: Breast cancer subtypes identified in genomic studies have different underlying genetic defects. Mutations in the tumor suppressor p53 occur more frequently in estrogen receptor (ER) negative, basal-like and HER2-amplified tumors than in luminal, ER positive tumors. Thus, because p53 mutation status is tightly linked to other characteristics of prognostic importance, it is difficult to identify p53's independent prognostic effects. The relation between p53 status and subtype can be better studied by combining data from primary tumors with data from isogenic cell line pairs (with and without p53 function). METHODS: The p53-dependent gene expression signatures of four cell lines (MCF-7, ZR-75-1, and two immortalized human mammary epithelial cell lines) were identified by comparing p53-RNAi transduced cell lines to their parent cell lines. Cell lines were treated with vehicle only or doxorubicin to identify p53 responses in both non-induced and induced states. The cell line signatures were compared with p53-mutation associated genes in breast tumors. RESULTS: Each cell line displayed distinct patterns of p53-dependent gene expression, but cell type specific (basal vs. luminal) commonalities were evident. Further, a common gene expression signature associated with p53 loss across all four cell lines was identified. This signature showed overlap with the signature of p53 loss/mutation status in primary breast tumors. Moreover, the common cell-line tumor signature excluded genes that were breast cancer subtype-associated, but not downstream of p53. To validate the biological relevance of the common signature, we demonstrated that this gene set predicted relapse-free, disease-specific, and overall survival in independent test data. CONCLUSION: In the presence of breast cancer heterogeneity, experimental and biologically-based methods for assessing gene expression in relation to p53 status provide prognostic and biologically-relevant gene lists. Our biologically-based refinements excluded genes that were associated with subtype but not downstream of p53 signaling, and identified a signature for p53 loss that is shared across breast cancer subtypes

    Effect of Air Injection Depth on Big-bubble Formation in Lamellar Keratoplasty: an Ex Vivo Study

    Get PDF
    This study evaluated the effect of air injection depth in the big-bubble (BB) technique, which is used for corneal tissue preparation in lamellar keratoplasty. The BB technique was performed on ex vivo human corneoscleral buttons using a depth-sensing needle, based on optical coherence tomography (OCT) imaging technology. The needle tip, equipped with a miniaturized OCT depth-sensing probe, was inserted for air injection at a specified depth. Inside the corneal tissue, our needle obtained OCT line profiles, from which residual thickness below the needle tip was measured. Subjects were classified into Groups I, II, III, and IV based on injection depths of 75-80%, 80-85%, 85-90%, and &gt; 90% of the full corneal thickness, respectively. Both Type I and II BBs were produced when the mean residual thicknesses of air injection were 109.7 +/- 38.0 mu m and 52.4 +/- 19.2 mu m, respectively. Type II BB (4/5) was dominant in group IV. Bubble burst occurred in 1/16 cases of type I BB and 3/16 cases of type II BB, respectively. Injection depth was an important factor in determining the types of BBs produced. Deeper air injection could facilitate formation of Type II BBs, with an increased risk of bubble bursts

    Climate Change, Habitat Loss, Protected Areas and the Climate Adaptation Potential of Species in Mediterranean Ecosystems Worldwide

    Get PDF
    Mediterranean climate is found on five continents and supports five global biodiversity hotspots. Based on combined downscaled results from 23 atmosphere-ocean general circulation models (AOGCMs) for three emissions scenarios, we determined the projected spatial shifts in the mediterranean climate extent (MCE) over the next century. Although most AOGCMs project a moderate expansion in the global MCE, regional impacts are large and uneven. The median AOGCM simulation output for the three emissions scenarios project the MCE at the end of the 21st century in Chile will range from 129–153% of its current size, while in Australia, it will contract to only 77–49% of its current size losing an area equivalent to over twice the size of Portugal. Only 4% of the land area within the current MCE worldwide is in protected status (compared to a global average of 12% for all biome types), and, depending on the emissions scenario, only 50–60% of these protected areas are likely to be in the future MCE. To exacerbate the climate impact, nearly one third (29–31%) of the land where the MCE is projected to remain stable has already been converted to human use, limiting the size of the potential climate refuges and diminishing the adaptation potential of native biota. High conversion and low protection in projected stable areas make Australia the highest priority region for investment in climate-adaptation strategies to reduce the threat of climate change to the rich biodiversity of the mediterranean biome

    Proinflammatory cytokine levels in fibromyalgia patients are independent of body mass index

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Fibromyalgia (FM) is characterized by chronic, widespread muscular pain and tenderness and is generally associated with other somatic and psychological symptoms. Further, circulatory levels of proinflammatory cytokines (IL-1β, TNF-α, and IL-6) may be altered in FM patients, possibly in association with their symptoms. Recently, rises in BMI have been suggested to contribute to increased circulating levels of proinflammatory cytokines in FM patients. Our aim was to measure the circulatory levels of proinflammatory cytokines to determine the influence of BMI on these levels in FM patients and healthy volunteers (HVs). In Spanish FM patients (n = 64) and HVs (n = 25), we measured BMI and serum concentrations of proinflammatory cytokines by capture ELISA.</p> <p>Findings</p> <p>There were significant differences in BMI levels between FM patients (26.40 ± 4.46) and HVs (23.64 ± 3.45) and significant increase in IL-6 in FM patients (16.28 ± 8.13 vs 0.92 ± 0.32 pg/ml) (P < 0.001). IL-1β and TNF-α decreased in FM patients compared with HVs. By ANCOVA, there was no significant association between BMI and TNF-α (F = 0.098, p = 0.75) or IL-6 (F = 0.221, p = 0.63) levels in FM patients.</p> <p>Conclusions</p> <p>Our analysis in FM patients of BMI as a covariate of proinflammatory cytokines levels showed that serum TNF-α and IL-6 levels are independent of BMI. Further studies are necessary to dissect these findings and their implication in future therapeutic approaches for FM patients.</p

    Evaluation of the potential index model to predict habitat suitability of forest species: the potential distribution of mountain pine (Pinus uncinata) in the Iberian peninsula

    Get PDF
    Characterization of the suitability or potentiality of a territory for forest tree species is an important source of information for forest planning and managing. In this study, we compared a relatively simple methodology to generate potential habitat distribution areas that has been traditionally used in Spain (the potential index model) with a statistical modelling approach (generalized linear model). We modelled the potential distribution of mountain pine (Pinus uncinata) in the Iberian peninsula as a working example. The potential index model generated a map of habitat suitability according to the values of an index of potentiality, whose distribution has usually divided into four categories based on quartiles (from optimum to low suitability). Considering all values of the index of potentiality as presences of mountain pine resulted in a low to moderate degree of agreement between the potential index model and the generalized linear model according to the kappa coefficient. Using the cut-off value of the index of potentiality that maximized the degree of agreement between both modelling approaches resulted in a substantial similarity between the maps of the predicted distribution of mountain pine. This cut-off value did lie in the upper-third quartile of the potential index distribution (high suitability category), and roughly coincided with the upper 30th percentile. The use of statistical techniques, which have proved to be powerful and versatile for species distribution modelling, is recommended. However, the potential index model, together with the adjustments proposed here, could be a reasonably simple methodology to predict the potential distribution of forest tree species that forest managers should take into account when evaluating forestation and afforestation projects

    Characterization of Novel Antimalarial Compound ACT-451840: Preclinical Assessment of Activity and Dose-Efficacy Modeling.

    Get PDF
    BACKGROUND: Artemisinin resistance observed in Southeast Asia threatens the continued use of artemisinin-based combination therapy in endemic countries. Additionally, the diversity of chemical mode of action in the global portfolio of marketed antimalarials is extremely limited. Addressing the urgent need for the development of new antimalarials, a chemical class of potent antimalarial compounds with a novel mode of action was recently identified. Herein, the preclinical characterization of one of these compounds, ACT-451840, conducted in partnership with academic and industrial groups is presented. METHOD AND FINDINGS: The properties of ACT-451840 are described, including its spectrum of activities against multiple life cycle stages of the human malaria parasite Plasmodium falciparum (asexual and sexual) and Plasmodium vivax (asexual) as well as oral in vivo efficacies in two murine malaria models that permit infection with the human and the rodent parasites P. falciparum and Plasmodium berghei, respectively. In vitro, ACT-451840 showed a 50% inhibition concentration of 0.4 nM (standard deviation [SD]: ± 0.0 nM) against the drug-sensitive P. falciparum NF54 strain. The 90% effective doses in the in vivo efficacy models were 3.7 mg/kg against P. falciparum (95% confidence interval: 3.3-4.9 mg/kg) and 13 mg/kg against P. berghei (95% confidence interval: 11-16 mg/kg). ACT-451840 potently prevented male gamete formation from the gametocyte stage with a 50% inhibition concentration of 5.89 nM (SD: ± 1.80 nM) and dose-dependently blocked oocyst development in the mosquito with a 50% inhibitory concentration of 30 nM (range: 23-39). The compound's preclinical safety profile is presented and is in line with the published results of the first-in-man study in healthy male participants, in whom ACT-451840 was well tolerated. Pharmacokinetic/pharmacodynamic (PK/PD) modeling was applied using efficacy in the murine models (defined either as antimalarial activity or as survival) in relation to area under the concentration versus time curve (AUC), maximum observed plasma concentration (Cmax), and time above a threshold concentration. The determination of the dose-efficacy relationship of ACT-451840 under curative conditions in rodent malaria models allowed prediction of the human efficacious exposure. CONCLUSION: The dual activity of ACT-451840 against asexual and sexual stages of P. falciparum and the activity on P. vivax have the potential to meet the specific profile of a target compound that could replace the fast-acting artemisinin component and harbor additional gametocytocidal activity and, thereby, transmission-blocking properties. The fast parasite reduction ratio (PRR) and gametocytocidal effect of ACT-451840 were recently also confirmed in a clinical proof-of-concept (POC) study

    An integration of complementary strategies for gene-expression analysis to reveal novel therapeutic opportunities for breast cancer

    Get PDF
    INTRODUCTION. Perhaps the major challenge in developing more effective therapeutic strategies for the treatment of breast cancer patients is confronting the heterogeneity of the disease, recognizing that breast cancer is not one disease but multiple disorders with distinct underlying mechanisms. Gene-expression profiling studies have been used to dissect this complexity, and our previous studies identified a series of intrinsic subtypes of breast cancer that define distinct populations of patients with respect to survival. Additional work has also used signatures of oncogenic pathway deregulation to dissect breast cancer heterogeneity as well as to suggest therapeutic opportunities linked to pathway activation. METHODS. We used genomic analyses to identify relations between breast cancer subtypes, pathway deregulation, and drug sensitivity. For these studies, we use three independent breast cancer gene-expression data sets to measure an individual tumor phenotype. Correlation between pathway status and subtype are examined and linked to predictions for response to conventional chemotherapies. RESULTS. We reveal patterns of pathway activation characteristic of each molecular breast cancer subtype, including within the more aggressive subtypes in which novel therapeutic opportunities are critically needed. Whereas some oncogenic pathways have high correlations to breast cancer subtype (RAS, CTNNB1, p53, HER1), others have high variability of activity within a specific subtype (MYC, E2F3, SRC), reflecting biology independent of common clinical factors. Additionally, we combined these analyses with predictions of sensitivity to commonly used cytotoxic chemotherapies to provide additional opportunities for therapeutics specific to the intrinsic subtype that might be better aligned with the characteristics of the individual patient. CONCLUSIONS. Genomic analyses can be used to dissect the heterogeneity of breast cancer. We use an integrated analysis of breast cancer that combines independent methods of genomic analyses to highlight the complexity of signaling pathways underlying different breast cancer phenotypes and to identify optimal therapeutic opportunities.V Foundation for Cancer Research (Partners in Excellence grant
    corecore