472 research outputs found

    Heterocycle-based bifunctional organocatalysts in asymmetric synthesis

    Get PDF
    Different chiral bifunctional organocatalysts derived from trans-cyclohexane-1,2-diamine bearing different types of guanidine units able to form-hydrogen bonding activation have been designed. Conformational rigid 2-aminobenzimidazoles bearing a tertiary amino group have been used in enantioselective Michael type reactions of activated methylene compounds to nitroalkenes. The C2 symmetric bis(2-aminobenzimidazole) derivatives the appropriate organocatalyst for the conjugate addition of 1,3-dicarbonyl compounds to maleimides as well as for the SN1 reaction of benzylic alcohols with carbon nucleophiles. 2-Aminobenzimidazoles bearing a primary amino group have shown excellent catalytic activity in the Michael reaction of aldehydes to maleimides and nitroalkenes. Diastereomeric 2-aminopyrimidines bearing a prolinamide unit have been incorporated in the trans-cyclohexane-1,2-diamine scaffold and have been used for the inter- and intra-molecular direct aldol reaction under solvent-free conditions. For the Michael reaction of aldehydes with maleimides the primary amine 2-aminopyrimidine has shown excellent efficiency as organocatalyst. The bifunctional character of these organocatalysts has been demonstrated by means of DFT calculations.The Spanish Ministerio de Ciencia e Innovación (MICINN) (projects CTQ2010-20387, and Consolider Ingenio 2010, CSD2007-00006), the Spanish Ministerio de Economía y Competitividad (MINECO) (projects CTQ2013-43446-P and CTQ2014-51912-REDC), FEDER, the Generalitat Valenciana (PROMETEO 2009/039 and PROMETEOII/2014/017), the Basque Government (GV Grant IT-291-07), the FP7 Marie Curie Actions of the European Commission via the ITN ECHONET network (MCITN-2012-316379) and the Universities of Alicante and Basque Country are gratefully acknowledged for financial support. We also thank for technical and human support provided by IZO-SGI SGIker of UPV-EHU and European funding (ERDF and ESF)

    Active queue management as quality of service enabler for 5G networks

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.5G is envisioned as the key technology for guaranteeing low-latency wireless services. Packets will be marked with QoS Flow Indicators (QFI) for different forwarding treatment. 3GPP defines the end-to-end delay limits, but leaves the QoS provisioning methods as implementation dependent. Different services with different constraints will inevitably share queues at some network entity. On the one hand, maintaining the shared queues uncongested will guarantee a rapid packet delivery to the subsequent entity. A brief sojourn time is indispensable for an on time low-latency priority traffic delivery. On the other hand, if shared queues are maintained undersized, throughput will be squandered. In this paper, we propose the use of AQM techniques in 5G networks to guarantee delay limits of QoS flows. Through the evaluation of realistic delay-sensitive and background traffic, we compare different possible solutions. We show that AQM mechanisms together with limited queues, maintain the system uncongested, which reduces drastically the delay, while effectively achieving the maximum possible throughput.Peer ReviewedPostprint (author's final draft

    A Dynamic Kinetic Asymmetric Heck Reaction for the Simultaneous Generation of Central and Axial Chirality

    Get PDF
    A highly diastereo- and enantioselective, scalable Pd-catalyzed dynamic kinetic asymmetric Heck reaction of heterobiaryl sulfonates with electron-rich olefins is described. The coupling of 2,3-dihydrofuran or N-boc protected 2,3-dihydropyrrole with a variety of quinoline, quinazoline, phthalazine, and picoline derivatives takes place with simultaneous installation of central and axial chirality, reaching excellent diastereo- and enantiomeric excesses when in situ formed [Pd0/DM-BINAP] was used as the catalyst, with loadings reduced down to 2 mol % in large scale reactions. The coupling of acyclic, electron-rich alkenes can also be performed using a [Pd0/Josiphos ligand] to obtain axially chiral heterobiaryl α-substituted alkenes in high yields and enantioselectivities. Products from Boc-protected 2,3-dihydropyrrole can be easily transformed into N,N ligands or appealing axially chiral, bifunctional proline-type organocatalysts. Computational studies suggest that a β-hydride elimination is the stereocontrolling step, in agreement with the observed stereochemical outcome of the reaction.Ministerio de Ciencia e Innovación (Grants CTQ2016-76908-C2-1-P; CTQ2016-76908-C2-2-P; CTQ2016-78083-P; RYC-2013-12585)European Commission (FEDER Programme)Junta de Andalucía (Grant 2012/FQM 10787)Universidad de Sevilla (Grant No. 1800511201)European Union - Marie Skłodowska-Curie (COFUND—Grant Agreement nº 291780

    Pyrimidine-Derived Prolinamides as Recoverable Bifunctional Organocatalysts for Enantioselective Inter- and Intramolecular Aldol Reactions under Solvent-Free Conditions

    Get PDF
    Chiral L-prolinamides 2 containing the (R,R)- and (S,S)-trans-cyclohexane-1,2-diamine scaffold and a 2-pyrimidinyl unit are synthesized and used as general organocatalysts for intermolecular and intramolecular aldol reactions with 1,6-hexanedioic acid as a co-catalyst under solvent-free conditions. The intermolecular reaction between ketone–aldehyde and aldehyde–aldehyde must be performed under wet conditions with catalyst (S,S)-2b at 10 °C, which affords anti-aldols with high regio-, diastereo-, and enantioselectivities. For the Hajos–Parrish–Eder–Sauer–Wiechert reaction, both diastereomers of catalyst 2 give similar results at room temperature in the absence of water to give the corresponding Wieland–Miescher ketone and derivatives. Both types of reactions were scaled up to 1 g, and the organocatalysts were recovered by extractive workup and reused without any appreciable loss in activity. DFT calculations support the stereochemical results of the intermolecular process and the bifunctional role played by the organocatalyst by providing a computational comparison of the H-bonding networks occurring with catalysts 2a and 2b.The Spanish Ministerio de Ciencia e Innovación (MICINN) (projects CTQ2010-20387 and Consolider Ingenio 2010, CSD2007-00006), the Spanish Ministerio de Economia y Competitividad (MINECO) (projects CTQ2013-43446-P and CTQ2014-51912-REDC), Fondos Europeos para el Desarrollo Regional (FEDER), Generalitat Valenciana (PROMETEO 2009/039 and PROMETEOII/2014/017), the Basque Government (GV Grant IT-291-07), the European Commission, FP7 Marie Curie Actions through the ITN ECHONET network (MCITN-2012-316379), the University of Alicante, and the University of the Basque Country are gratefully acknowledged for financial support

    Cationic exchange in nanosized ZnFe2O4 spinel revealed by experimental and simulated near-edge absorption structure

    Full text link
    The non-equilibrium cation site occupancy in nanosized zinc ferrites (6-13 nm) with different degree of inversion (0.2 to 0.4) was investigated using Fe and Zn K-edge x-ray absorption spectroscopy XANES and EXAFS, and magnetic measurements. The very good agreement between experimental and ab-initio calculations on the Zn K-edge XANES region clearly show the large Zn2+(A)--Zn2+[B] transference that takes place in addition to the well-identified Fe3+[B]--Fe3+(A) one, without altering the long-range structural order. XANES spectra features as a function of the spinel inversion were shown to depend on the configuration of the ligand shells surrounding the absorbing atom. This XANES approach provides a direct way to sense cationic inversion in these spinel compounds. We also demonstrated that a mechanical crystallization takes place on nanocrystalline spinel that causes an increase of both grain and magnetic sizes and, simultaneously, generates a significant augment of the inversion.Comment: 5 pages, 5 eps figures, uses revtex4, corrected table

    A screen for transcription factor targets of glycogen synthase kinase-3 highlights an inverse correlation of NFκB and androgen receptor signaling in prostate cancer

    Get PDF
    This is an open-access article distributed under the terms of the Creative Commons Attribution License.Expression of Glycogen Synthase Kinase-3 (GSK-3) is elevated in prostate cancer and its inhibition reduces prostate cancer cell proliferation, in part by reducing androgen receptor (AR) signaling. However, GSK-3 inhibition can also activate signals that promote cell proliferation and survival, which may preclude the use of GSK-3 inhibitors in the clinic. To identify such signals in prostate cancer, we screened for changes in transcription factor target DNA binding activity in GSK-3-silenced cells. Among the alterations was a reduction in AR DNA target binding, as predicted from previous studies, and an increase in NFκB DNA target binding. Consistent with the latter, gene silencing of GSK-3 or inhibition using the GSK-3 inhibitor CHIR99021 increased basal NFκB transcriptional activity. Activation of NFκB was accompanied by an increase in the level of the NFκB family member RelB. Conversely, silencing RelB reduced activation of NFκB by CHIR99021. Furthermore, the reduction of prostate cancer cell proliferation by CHIR99021 was potentiated by inhibition of NFκB signaling using the IKK inhibitor PS1145. Finally, stratification of human prostate tumor gene expression data for GSK3 revealed an inverse correlation between NFκB-dependent and androgen-dependent gene expression, consistent with the results from the transcription factor target DNA binding screen. In addition, there was a correlation between expression of androgen-repressed NFκB target genes and reduced survival of patients with metastatic prostate cancer. These findings highlight an association between GSK-3/AR and NFκB signaling and its potential clinical importance in metastatic prostate cancer.This study was funded by grants from the Spanish Ministry of Science and Innovation (SAF 2008-00768; SAF2011-30494), the Prostate Cancer Research Foundation (now PCUK) and the Department of Industry, Tourism and Trade (Etortek) and Department of Innovation Technology of the Government of the Autonomous Community of the Basque Country.Peer Reviewe

    Identification of non-canonical Wnt receptors required for Wnt-3a-induced early differentiation of human neural stem cells

    Get PDF
    Wnt proteins preferentially activate either β-catenin-dependent or β-cateninindependent signals, but the activity of a particular Wnt also depends on cellular context and receptor availability. We previously reported that Wnt-3a induces neural differentiation of human embryonic stem cell-derived neural stem cells (NSCs) in a β-catenin-independent manner by activating a signal involving JNK and the AP-1 family member ATF-2. Here, we report the results of a gene silencing approach to identify the Wnt receptors that mediate this response to Wnt-3a. Silencing of ROR2 increased neuronal differentiation, as measured by expression of the genes DCX, NEUROD1 and NGN1, suggesting ROR2 signals normally prevent differentiation. Silencing of the other Wnt receptors singly did not affect Wnt-3ainduced neuronal differentiation. However, pair-wise silencing of ROR1 and FZD4 or FZD5 and of LRP6 and FZD4 or FZD5 inhibited neuronal differentiation, as detected by reductions in the expression of neuronal genes and immunocytochemical detection of DCX and NEUROD1 and DCX. Ectopic expression of these receptors in HEK 293 cells increased ATF2-dependent transcription. In addition, ROR1 co-immunoprecipitated with FZD4 and LRP6 in transfected HEK 293 cells and colocalized with FZD4 and with LRP6 at the cell surface of transfected L cells. Wnt-3a did not appear to affect these interactions but did alter the interactions between LRP6 and FZD4/5. Together, these observations highlight roles for ROR1, LRP6, FZD4 and FZD5 in neural stem cell differentiation and provide support for a model in which dynamic interactions among these receptors mediate Wnt-3a activation of ATF2 signaling

    Citizen science provides a reliable and scalable tool to track disease-carrying mosquitoes

    Get PDF
    Recent outbreaks of Zika, chikungunya and dengue highlight the importance of better understanding the spread of disease-carrying mosquitoes across multiple spatio-temporal scales. Traditional surveillance tools are limited by jurisdictional boundaries and cost constraints. Here we show how a scalable citizen science system can solve this problem by combining citizen scientists'' observations with expert validation and correcting for sampling effort. Our system provides accurate early warning information about the Asian tiger mosquito (Aedes albopictus) invasion in Spain, well beyond that available from traditional methods, and vital for public health services. It also provides estimates of tiger mosquito risk comparable to those from traditional methods but more directly related to the human-mosquito encounters that are relevant for epidemiological modelling and scalable enough to cover the entire country. These results illustrate how powerful public participation in science can be and suggest citizen science is positioned to revolutionize mosquito-borne disease surveillance worldwide

    Influenza vaccination among multiple sclerosis patients during the COVID-19 pandemic

    Get PDF
    In the context of the COVID-19 pandemic, the co-circulation of influenza and SARS-CoV-2 viruses may have severe complications for vulnerable populations. For this reason, the World Health Organization pointed to the 2020–2021 anti-influenza campaign as being of special relevance. Our aim was to assess the 2020–2021 influenza vaccination coverage, and its associated factors, among patients in a Spanish multiple sclerosis (MS) unit. A cross–sectional study was conducted. People attending the MS unit of the Clinical Hospital of Zaragoza during 2020 were included. Variables were obtained by reviewing records. Associations with 2020–2021 influenza vaccination were analyzed using bivariate analysis and a multiple logistic regression model. A total of 302 patients were studied; 62.6% were women, whose mean age (standard deviation) was 47.3 (11.5) years. The 2020–2021 influenza vaccination coverage was 55.3% (59.8% in women and 47.8% in men). A total of 89.7% had at least one other indication for vaccination (e.g., immunosuppressive treatment in 225 patients). The variables associated with getting vaccinated were being female (adjusted odds ratio (95% confidence interval) (aOR (95%CI) = 2.12 (1.12–3.99)), having received the 2019–2020 influenza vaccine (aOR (95%CI) = 31.82 (14.71–68.86)) and being born in Spain (aOR (95%CI) = 12.91 (1.07–156.28)). Coverage is moderate compared to other countries. It is necessary to develop strategies to improve it, especially in men and those born outside Spain
    corecore