88 research outputs found
Recommended from our members
Fission product gamma spectra
The fission product gamma spectra of /sup 233/U, /sup 235/U, and /sup 239/Pu were measured at 12 cooling times following 20,000-s irradiations in the thermal column of the Omega West Reactor. The mean cooling times ranged from 29 s to 146,500 s. The total gamma energies were obtained by integrating over the energy spectra, and both the spectra and the total energies are compared with calculations using the CINDER-10 code and ENDF/B-IV data base. The measured and calculated gamma spectra are compared in a series of figures. The measured total gamma energies are approx. 14% larger than the calculated energies during the earliest counting period (4 s to 54 s cooling time). For /sup 235/U, the measured and calculated total gamma energies are nearly the same after 1200 s cooling time, and the measurements are 2% to 6% lower at longer cooling times. For /sup 239/Pu, the measured and calculated total gamma energies are nearly the same at cooling times longer than 4,000 s, and for /sup 233/U this condition prevails at cooling times longer than 10,000 s. 39 figures, 4 tables
Quantum dynamics of local phase differences between reservoirs of driven interacting bosons separated by simple aperture arrays
We present a derivation of the effective action for the relative phase of
driven, aperture-coupled reservoirs of weakly-interacting condensed bosons from
a (3+1)-D microscopic model with local U(1) gauge symmetry. We show that
inclusion of local chemical potential and driving velocity fields as a gauge
field allows derivation of the hydrodynamic equations of motion for the driven
macroscopic phase differences across simple aperture arrays. For a single
aperture, the current-phase equation for driven flow contains sinusoidal,
linear, and current-bias contributions. We compute the renormalization group
(RG) beta function of the periodic potential in the effective action for small
tunneling amplitudes and use this to analyze the temperature dependence of the
low-energy current-phase relation, with application to the transition from
linear to sinusoidal current-phase behavior observed in experiments by
Hoskinson et al. \cite{packard} for liquid He driven through nanoaperture
arrays. Extension of the microscopic theory to a two-aperture array shows that
interference between the microscopic tunneling contributions for individual
apertures leads to an effective coupling between apertures which amplifies the
Josephson oscillations in the array. The resulting multi-aperture current-phase
equations are found to be equivalent to a set of equations for coupled pendula,
with microscopically derived couplings.Comment: 16 pages, 5 figures v2: typos corrected, RG phase diagram correcte
First principles study of strain/electronic interplay in ZnO; Stress and temperature dependence of the piezoelectric constants
We present a first-principles study of the relationship between stress,
temperature and electronic properties in piezoelectric ZnO. Our method is a
plane wave pseudopotential implementation of density functional theory and
density functional linear response within the local density approximation. We
observe marked changes in the piezoelectric and dielectric constants when the
material is distorted. This stress dependence is the result of strong, bond
length dependent, hybridization between the O and Zn electrons. Our
results indicate that fine tuning of the piezoelectric properties for specific
device applications can be achieved by control of the ZnO lattice constant, for
example by epitaxial growth on an appropriate substrate.Comment: accepted for publication in Phys. Rev.
First Principles Investigation of Ferromagnetism and Ferroelectricity in Bismuth Manganite
We present results of local spin density approximation (LSDA) pseudopotential
calculations for the perovskite structure oxide, bismuth manganite (BiMnO3).
The origin of the differences between bismuth manganite and other perovskite
manganites is determined by first calculating total energies and band
structures of the high symmetry cubic phase, then sequentially lowering the
magnetic and structural symmetry. Our results indicate that covalent bonding
between bismuth cations and oxygen anions stabilizes different magnetic and
structural phases compared with the rare earth manganites. This is consistent
with recent experimental results showing enhancement of charge ordering in
doped bismuth manganite
Towards robust functional neuroimaging genetics of cognition
A commonly held assumption in cognitive neuroscience is that, because measures of human brain function are closer to underlying biology than distal indices of behavior/cognition, they hold more promise for uncovering genetic pathways. Supporting this view is an influential fMRI-based study of sentence reading/listening by Pinel et al. (2012), who reported that common DNA variants in specific candidate genes were associated with altered neural activation in language-related regions of healthy individuals that carried them. In particular, different single-nucleotide polymorphisms (SNPs) of FOXP2 correlated with variation in task-based activation in left inferior frontal and precentral gyri, whereas a SNP at the KIAA0319/TTRAP/THEM2 locus was associated with variable functional asymmetry of the superior temporal sulcus. Here, we directly test each claim using a closely matched neuroimaging genetics approach in independent cohorts comprising 427 participants, four times larger than the original study of 94 participants. Despite demonstrating power to detect associations with substantially smaller effect sizes than those of the original report, we do not replicate any of the reported associations. Moreover, formal Bayesian analyses reveal substantial to strong evidence in support of the null hypothesis (no effect). We highlight key aspects of the original investigation, common to functional neuroimaging genetics studies, which could have yielded elevated false-positive rates. Genetic accounts of individual differences in cognitive functional neuroimaging are likely to be as complex as behavioral/cognitive tests, involving many common genetic variants, each of tiny effect. Reliable identification of true biological signals requires large sample sizes, power calculations, and validation in independent cohorts with equivalent paradigms. SIGNIFICANCE STATEMENT A pervasive idea in neuroscience is that neuroimaging-based measures of brain function, being closer to underlying neurobiology, are more amenable for uncovering links to genetics. This is a core assumption of prominent studies that associate common DNA variants with altered activations in task-based fMRI, despite using samples (10–100 people) that lack power for detecting the tiny effect sizes typical of genetically complex traits. Here, we test central findings from one of the most influential prior studies. Using matching paradigms and substantially larger samples, coupled to power calculations and formal Bayesian statistics, our data strongly refute the original findings. We demonstrate that neuroimaging genetics with task-based fMRI should be subject to the same rigorous standards as studies of other complex traits
Theoretical Aspects of Charge Ordering in Molecular Conductors
Theoretical studies on charge ordering phenomena in quarter-filled molecular
(organic) conductors are reviewed. Extended Hubbard models including not only
the on-site but also the inter-site Coulomb repulsion are constructed in a
straightforward way from the crystal structures, which serve for individual
study on each material as well as for their systematic understandings. In
general the inter-site Coulomb interaction stabilizes Wigner crystal-type
charge ordered states, where the charge localizes in an arranged manner
avoiding each other, and can drive the system insulating. The variety in the
lattice structures, represented by anisotropic networks in not only the
electron hopping but also in the inter-site Coulomb repulsion, brings about
diverse problems in low-dimensional strongly correlated systems. Competitions
and/or co-existences between the charge ordered state and other states are
discussed, such as metal, superconductor, and the dimer-type Mott insulating
state which is another typical insulating state in molecular conductors.
Interplay with magnetism, e.g., antiferromagnetic state and spin gapped state
for example due to the spin-Peierls transition, is considered as well. Distinct
situations are pointed out: influences of the coupling to the lattice degree of
freedom and effects of geometrical frustration which exists in many molecular
crystals. Some related topics, such as charge order in transition metal oxides
and its role in new molecular conductors, are briefly remarked.Comment: 21 pages, 19 figures, to be published in J. Phys. Soc. Jpn. special
issue on "Organic Conductors"; figs. 4 and 11 replaced with smaller sized
fil
Reconnecting with nature for sustainability
Calls for humanity to ‘reconnect to nature’ have grown increasingly louder from both scholars and civil society. Yet, there is relatively little coherence about what reconnecting to nature means, why it should happen and how it can be achieved. We present a conceptual framework to organise existing literature and direct future research on human–nature connections. Five types of connections to nature are identified: material, experiential, cognitive, emotional, and philosophical. These various types have been presented as causes, consequences, or treatments of social and environmental problems. From this conceptual base, we discuss how reconnecting people with nature can function as a treatment for the global environmental crisis. Adopting a social–ecological systems perspective, we draw upon the emerging concept of ‘leverage points’—places in complex systems to intervene to generate change—and explore examples of how actions to reconnect people with nature can help transform society towards sustainability
13C labeling experiments at metabolic nonstationary conditions: An exploratory study
<p>Abstract</p> <p>Background</p> <p>Stimulus Response Experiments to unravel the regulatory properties of metabolic networks are becoming more and more popular. However, their ability to determine enzyme kinetic parameters has proven to be limited with the presently available data. In metabolic flux analysis, the use of <sup>13</sup>C labeled substrates together with isotopomer modeling solved the problem of underdetermined networks and increased the accuracy of flux estimations significantly.</p> <p>Results</p> <p>In this contribution, the idea of increasing the information content of the dynamic experiment by adding <sup>13</sup>C labeling is analyzed. For this purpose a small example network is studied by simulation and statistical methods. Different scenarios regarding available measurements are analyzed and compared to a non-labeled reference experiment. Sensitivity analysis revealed a specific influence of the kinetic parameters on the labeling measurements. Statistical methods based on parameter sensitivities and different measurement models are applied to assess the information gain of the labeled stimulus response experiment.</p> <p>Conclusion</p> <p>It was found that the use of a (specifically) labeled substrate will significantly increase the parameter estimation accuracy. An overall information gain of about a factor of six is observed for the example network. The information gain is achieved from the specific influence of the kinetic parameters towards the labeling measurements. This also leads to a significant decrease in correlation of the kinetic parameters compared to an experiment without <sup>13</sup>C-labeled substrate.</p
- …