212 research outputs found

    Localizability of Tachyonic Particles and Neutrinoless Double Beta Decay

    Get PDF
    The quantum field theory of superluminal (tachyonic) particles is plagued with a number of problems, which include the Lorentz non-invariance of the vacuum state, the ambiguous separation of the field operator into creation and annihilation operators under Lorentz transformations, and the necessity of a complex reinterpretation principle for quantum processes. Another unsolved question concerns the treatment of subluminal components of a tachyonic wave packets in the field-theoretical formalism, and the calculation of the time-ordered propagator. After a brief discussion on related problems, we conclude that rather painful choices have to be made in order to incorporate tachyonic spin-1/2 particles into field theory. We argue that the field theory needs to be formulated such as to allow for localizable tachyonic particles, even if that means that a slight unitarity violation is introduced into the S matrix, and we write down field operators with unrestricted momenta. We find that once these choices have been made, the propagator for the neutrino field can be given in a compact form, and the left-handedness of the neutrino as well as the right-handedness of the antineutrino follow naturally. Consequences for neutrinoless double beta decay and superluminal propagation of neutrinos are briefly discussed.Comment: 12 pages, 5 figure

    On Exactness Of The Supersymmetric WKB Approximation Scheme

    Full text link
    Exactness of the lowest order supersymmetric WKB (SWKB) quantization condition x1x2Eω2(x)dx=nπ\int^{x_2}_{x_1} \sqrt{E-\omega^2(x)} dx = n \hbar \pi, for certain potentials, is examined, using complex integration technique. Comparison of the above scheme with a similar, but {\it exact} quantization condition, cp(x,E)dx=2πn\oint_c p(x,E) dx = 2\pi n \hbar, originating from the quantum Hamilton-Jacobi formalism reveals that, the locations and the residues of the poles that contribute to these integrals match identically, for both of these cases. As these poles completely determine the eigenvalues in these two cases, the exactness of the SWKB for these potentials is accounted for. Three non-exact cases are also analysed; the origin of this non-exactness is shown to be due the presence of additional singularities in Eω2(x)\sqrt{E-\omega^2(x)}, like branch cuts in the xx-plane.Comment: 11 pages, latex, 1 figure available on reques

    The structure of superheavy elements newly discovered in the reaction of 86^{86}Kr with 208^{208}Pb

    Get PDF
    The structure of superheavy elements newly discovered in the 208^{208}Pb(86^{86}Kr,n) reaction at Berkeley is systematically studied in the Relativistic Mean Field (RMF) approach. It is shown that various usually employed RMF forces, which give fair description of normal stable nuclei, give quite different predictions for superheavy elements. Among the effective forces we tested, TM1 is found to be the good candidate to describe superheavy elements. The binding energies of the 293^{293}118 nucleus and its α\alpha-decay daughter nuclei obtained using TM1 agree with those of FRDM within 2 MeV. Similar conclusion that TM1 is the good interaction is also drawn from the calculated binding energies for Pb isotopes with the Relativistic Continuum Hartree Bogoliubov (RCHB) theory. Using the pairing gaps obtained from RCHB, RMF calculations with pairing and deformation are carried out for the structure of superheavy elements. The binding energy, shape, single particle levels, and the Q values of the α\alpha-decay QαQ_{\alpha} are discussed, and it is shown that both pairing correlation and deformation are essential to properly understand the structure of superheavy elements. A good agreement is obtained with experimental data on QαQ_{\alpha}. %Especially, the atomic number %dependence of QαQ_{\alpha} %seems to match with the experimental observationComment: 19 pages, 5 figure

    Rheological Chaos in a Scalar Shear-Thickening Model

    Get PDF
    We study a simple scalar constitutive equation for a shear-thickening material at zero Reynolds number, in which the shear stress \sigma is driven at a constant shear rate \dot\gamma and relaxes by two parallel decay processes: a nonlinear decay at a nonmonotonic rate R(\sigma_1) and a linear decay at rate \lambda\sigma_2. Here \sigma_{1,2}(t) = \tau_{1,2}^{-1}\int_0^t\sigma(t')\exp[-(t-t')/\tau_{1,2}] {\rm d}t' are two retarded stresses. For suitable parameters, the steady state flow curve is monotonic but unstable; this arises when \tau_2>\tau_1 and 0>R'(\sigma)>-\lambda so that monotonicity is restored only through the strongly retarded term (which might model a slow evolution of material structure under stress). Within the unstable region we find a period-doubling sequence leading to chaos. Instability, but not chaos, persists even for the case \tau_1\to 0. A similar generic mechanism might also arise in shear thinning systems and in some banded flows.Comment: Reference added; typos corrected. To appear in PRE Rap. Com

    Non-Hermitian quantum mechanics in non-commutative space

    Full text link
    We study non Hermitian quantum systems in noncommutative space as well as a \cal{PT}-symmetric deformation of this space. Specifically, a \mathcal{PT}-symmetric harmonic oscillator together with iC(x_1+x_2) interaction is discussed in this space and solutions are obtained. It is shown that in the \cal{PT} deformed noncommutative space the Hamiltonian may or may not possess real eigenvalues depending on the choice of the noncommutative parameters. However, it is shown that in standard noncommutative space, the iC(x_1+x_2) interaction generates only real eigenvalues despite the fact that the Hamiltonian is not \mathcal{PT}-symmetric. A complex interacting anisotropic oscillator system has also been discussed.Comment: 5 pages, revised versio

    Shell Corrections of Superheavy Nuclei in Self-Consistent Calculations

    Get PDF
    Shell corrections to the nuclear binding energy as a measure of shell effects in superheavy nuclei are studied within the self-consistent Skyrme-Hartree-Fock and Relativistic Mean-Field theories. Due to the presence of low-lying proton continuum resulting in a free particle gas, special attention is paid to the treatment of single-particle level density. To cure the pathological behavior of shell correction around the particle threshold, the method based on the Green's function approach has been adopted. It is demonstrated that for the vast majority of Skyrme interactions commonly employed in nuclear structure calculations, the strongest shell stabilization appears for Z=124, and 126, and for N=184. On the other hand, in the relativistic approaches the strongest spherical shell effect appears systematically for Z=120 and N=172. This difference has probably its roots in the spin-orbit potential. We have also shown that, in contrast to shell corrections which are fairly independent on the force, macroscopic energies extracted from self-consistent calculations strongly depend on the actual force parametrisation used. That is, the A and Z dependence of mass surface when extrapolating to unknown superheavy nuclei is prone to significant theoretical uncertainties.Comment: 14 pages REVTeX, 8 eps figures, submitted to Phys. Rev.

    Multispectral thermal imaging

    Full text link
    Many remote sensing applications rely on imaging spectrometry. Here the authors use imaging spectrometry for thermal and multispectral signatures measured from a satellite platform enhanced with a combination of accurate calibrations and on-board data for correcting atmospheric distortions. The approach is supported by physics-based end-to-end modeling and analysis, which permits a cost-effective balance between various hardware and software aspects. The goal is to develop and demonstrate advanced technologies and analysis tools toward meeting the needs of the customer; at the same time, the attributes of this system can address other applications in such areas as environmental change, agriculture, and volcanology

    Supersymmetric solutions of PT-/non-PT-symmetric and non-Hermitian Screened Coulomb potential via Hamiltonian hierarchy inspired variational method

    Get PDF
    The supersymmetric solutions of PT-symmetric and Hermitian/non-Hermitian forms of quantum systems are obtained by solving the Schrodinger equation for the Exponential-Cosine Screened Coulomb potential. The Hamiltonian hierarchy inspired variational method is used to obtain the approximate energy eigenvalues and corresponding wave functions.Comment: 13 page

    Theoretical study of the two-proton halo candidate 17^{17}Ne including contributions from resonant continuum and pairing correlations

    Full text link
    With the relativistic Coulomb wave function boundary condition, the energies, widths and wave functions of the single proton resonant orbitals for 17^{17}Ne are studied by the analytical continuation of the coupling constant (ACCC) approach within the framework of the relativistic mean field (RMF) theory. Pairing correlations and contributions from the single-particle resonant orbitals in the continuum are taken into consideration by the resonant Bardeen-Cooper-Schrieffer (BCS) approach, in which constant pairing strength is used. It can be seen that the fully self-consistent calculations with NL3 and NLSH effective interactions mostly agree with the latest experimental measurements, such as binding energies, matter radii, charge radii and densities. The energy of π\pi2s1/2_{1/2} orbital is slightly higher than that of π1d5/2\pi1d_{5/2} orbital, and the occupation probability of the (π(\pi2s1/2)2_{1/2})^2 orbital is about 20%, which are in accordance with the shell model calculation and three-body model estimation
    corecore