160 research outputs found

    Overnight changes in waking auditory evoked potential amplitude reflect altered sleep homeostasis in major depression

    Get PDF
    Objective: Sleep homeostasis is altered in major depressive disorder (MDD). Pre- to postsleep decline in waking auditory evoked potential (AEP) amplitude has been correlated with sleep slow wave activity (SWA), suggesting that overnight changes in waking AEP amplitude are homeostatically regulated in healthy individuals. This study investigated whether the overnight change in waking AEP amplitude and its relation to SWA is altered in MDD. Method: Using 256-channel high-density electroencephalography, all-night sleep polysomnography and single-tone waking AEPs pre- and postsleep were collected in 15 healthy controls (HC) and 15 non-medicated individuals with MDD. Results: N1 and P2 amplitudes of the waking AEP declined after sleep in the HC group, but not in MDD. The reduction in N1 amplitude also correlated with fronto-central SWA in the HC group, but a comparable relationship was not found in MDD, despite equivalent SWA between groups. No pre- to postsleep differences were found for N1 or P2 latencies in either group. These findings were not confounded by varying levels of alertness or differences in sleep variables between groups. Conclusion: MDD involves altered sleep homeostasis as measured by the overnight change in waking AEP amplitude. Future research is required to determine the clinical implications of these findings

    Sleep disturbances in an arctic population: The Tromsø Study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Prevalence estimates for insomnia range from 10 to 50% in the adult general population. Sleep disturbances cause great impairment in quality of life, which might even rival or exceed the impairment in other chronic medical disorders. The economic implications and use of health-care services related to chronic insomnia represent a clinical concern as well as a pronounced public health problem. Hypnotics are frequently prescribed for insomnia, but alcohol and over-the-counter sleep aids seem to be more widely used by insomniacs than prescription medications. Despite the complex relationship between insomnia and physical and mental health factors, the condition appears to be underrecognized and undertreated by health care providers, probably due to the generally limited knowledge of the causes and natural development of insomnia.</p> <p>Methods/Design</p> <p>The Tromsø Study is an ongoing population-based cohort study with five previous health studies undertaken between 1974 and 2001. This protocol outlines a planned study within the sixth Tromsø Study (Tromsø VI), aiming at; 1) describing sleep patterns in a community-based sample representative of the general population of northern Norway, and 2) examining outcome variables of sleep disturbances against possible explanatory and confounding variables, both within a cross-sectional approach, as well as retrospectively in a longitudinal study – exploring sleep patterns in subjects who have attended two or more of the previous Tromsø studies between 1974 and 2009. First, we plan to perform a simple screening in order to identify those participants with probable sleep disturbances, and secondly to investigate these sleep disturbances further, using an extensive sleep-questionnaire. We will also collect biological explanatory variables, i.e. blood samples, weight, height and blood pressure. We plan to merge data on an individual level from the Tromsø VI Study with data from the Norwegian Prescription Database (NorPD), which is a national registry including data for all prescription drugs issued at Norwegian pharmacies. Participants with sleep disturbances will be compared with pair-matched controls without sleep disturbances.</p> <p>Discussion</p> <p>Despite ongoing research, many challenges remain in the characterization of sleep disturbances and its correlates. Future mapping of the biological dimensions, natural history, as well as the behavioral and drug-related aspects of sleep disturbances in a representative population samples is clearly needed.</p

    Uncovering the Genetic Landscape for Multiple Sleep-Wake Traits

    Get PDF
    Despite decades of research in defining sleep-wake properties in mammals, little is known about the nature or identity of genes that regulate sleep, a fundamental behaviour that in humans occupies about one-third of the entire lifespan. While genome-wide association studies in humans and quantitative trait loci (QTL) analyses in mice have identified candidate genes for an increasing number of complex traits and genetic diseases, the resources and time-consuming process necessary for obtaining detailed quantitative data have made sleep seemingly intractable to similar large-scale genomic approaches. Here we describe analysis of 20 sleep-wake traits from 269 mice from a genetically segregating population that reveals 52 significant QTL representing a minimum of 20 genomic loci. While many (28) QTL affected a particular sleep-wake trait (e.g., amount of wake) across the full 24-hr day, other loci only affected a trait in the light or dark period while some loci had opposite effects on the trait during the light vs. dark. Analysis of a dataset for multiple sleep-wake traits led to previously undetected interactions (including the differential genetic control of number and duration of REM bouts), as well as possible shared genetic regulatory mechanisms for seemingly different unrelated sleep-wake traits (e.g., number of arousals and REM latency). Construction of a Bayesian network for sleep-wake traits and loci led to the identification of sub-networks of linkage not detectable in smaller data sets or limited single-trait analyses. For example, the network analyses revealed a novel chain of causal relationships between the chromosome 17@29cM QTL, total amount of wake, and duration of wake bouts in both light and dark periods that implies a mechanism whereby overall sleep need, mediated by this locus, in turn determines the length of each wake bout. Taken together, the present results reveal a complex genetic landscape underlying multiple sleep-wake traits and emphasize the need for a systems biology approach for elucidating the full extent of the genetic regulatory mechanisms of this complex and universal behavior

    Never Resting Brain: Simultaneous Representation of Two Alpha Related Processes in Humans

    Get PDF
    Brain activity is continuously modulated, even at “rest”. The alpha rhythm (8–12 Hz) has been known as the hallmark of the brain's idle-state. However, it is still debated if the alpha rhythm reflects synchronization in a distributed network or focal generator and whether it occurs spontaneously or is driven by a stimulus. This EEG/fMRI study aimed to explore the source of alpha modulations and their distribution in the resting brain. By serendipity, while computing the individually defined power modulations of the alpha-band, two simultaneously occurring components of these modulations were found. An ‘induced alpha’ that was correlated with the paradigm (eyes open/ eyes closed), and a ‘spontaneous alpha’ that was on-going and unrelated to the paradigm. These alpha components when used as regressors for BOLD activation revealed two segregated activation maps: the ‘induced map’ included left lateral temporal cortical regions and the hippocampus; the ‘spontaneous map’ included prefrontal cortical regions and the thalamus. Our combined fMRI/EEG approach allowed to computationally untangle two parallel patterns of alpha modulations and underpin their anatomical basis in the human brain. These findings suggest that the human alpha rhythm represents at least two simultaneously occurring processes which characterize the ‘resting brain’; one is related to expected change in sensory information, while the other is endogenous and independent of stimulus change

    Differences between patients' and clinicians' report of sleep disturbance: a field study in mental health care in Norway

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The aims of the study was to assess the prevalence of diagnosed insomnia and the agreement between patient- and clinician-reported sleep disturbance and use of prescribed hypnotic medication in patients in treatment for mental disorders.</p> <p>Methods</p> <p>We used three cross-sectional, multicenter data-sets from 2002, 2005, and 2008. Data-set 1 included diagnostic codes from 93% of all patients receiving treatment in mental health care in Norway (<it>N </it>= 40261). Data-sets 2 (<it>N </it>= 1065) and 3 (<it>N </it>= 1181) included diagnostic codes, patient- and clinician-reported sleep disturbance, and use of prescribed hypnotic medication from patients in 8 mental health care centers covering 10% of the Norwegian population.</p> <p>Results</p> <p>34 patients in data-set 1 and none in data-sets 2 and 3 had a diagnosis of insomnia as a primary or comorbid diagnosis. In data-sets 2 and 3, 42% and 40% of the patients reported sleep disturbance, whereas 24% and 13% had clinician-reported sleep disturbance, and 7% and 9% used hypnotics. Patients and clinicians agreed in 29% and 15% of the cases where the patient or the clinician or both had reported sleep disturbance. Positive predictive value (PPV) of clinicians' evaluations of patient sleep disturbance was 62% and 53%. When the patient reported sleep disturbance as one of their most prominent problems PPV was 36% and 37%. Of the patients who received hypnotic medication, 23% and 29% had neither patient nor clinician-rated sleep disturbance.</p> <p>Conclusion</p> <p>When patients meet the criteria for a mental disorder, insomnia is almost never diagnosed, and sleep disturbance is imprecisely recognized relative to the patients' experience of sleep disturbance.</p

    Non-Image-Forming Light Driven Functions Are Preserved in a Mouse Model of Autosomal Dominant Optic Atrophy

    Get PDF
    Autosomal dominant optic atrophy (ADOA) is a slowly progressive optic neuropathy that has been associated with mutations of the OPA1 gene. In patients, the disease primarily affects the retinal ganglion cells (RGCs) and causes optic nerve atrophy and visual loss. A subset of RGCs are intrinsically photosensitive, express the photopigment melanopsin and drive non-image-forming (NIF) visual functions including light driven circadian and sleep behaviours and the pupil light reflex. Given the RGC pathology in ADOA, disruption of NIF functions might be predicted. Interestingly in ADOA patients the pupil light reflex was preserved, although NIF behavioural outputs were not examined. The B6; C3-Opa1Q285STOP mouse model of ADOA displays optic nerve abnormalities, RGC dendropathy and functional visual disruption. We performed a comprehensive assessment of light driven NIF functions in this mouse model using wheel running activity monitoring, videotracking and pupillometry. Opa1 mutant mice entrained their activity rhythm to the external light/dark cycle, suppressed their activity in response to acute light exposure at night, generated circadian phase shift responses to 480 nm and 525 nm pulses, demonstrated immobility-defined sleep induction following exposure to a brief light pulse at night and exhibited an intensity dependent pupil light reflex. There were no significant differences in any parameter tested relative to wildtype littermate controls. Furthermore, there was no significant difference in the number of melanopsin-expressing RGCs, cell morphology or melanopsin transcript levels between genotypes. Taken together, these findings suggest the preservation of NIF functions in Opa1 mutants. The results provide support to growing evidence that the melanopsin-expressing RGCs are protected in mitochondrial optic neuropathies

    Rhythmicity in Mice Selected for Extremes in Stress Reactivity: Behavioural, Endocrine and Sleep Changes Resembling Endophenotypes of Major Depression

    Get PDF
    Dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis, including hyper- or hypo-activity of the stress hormone system, plays a critical role in the pathophysiology of mood disorders such as major depression (MD). Further biological hallmarks of MD are disturbances in circadian rhythms and sleep architecture. Applying a translational approach, an animal model has recently been developed, focusing on the deviation in sensitivity to stressful encounters. This so-called 'stress reactivity' (SR) mouse model consists of three separate breeding lines selected for either high (HR), intermediate (IR), or low (LR) corticosterone increase in response to stressors.In order to contribute to the validation of the SR mouse model, our study combined the analysis of behavioural and HPA axis rhythmicity with sleep-EEG recordings in the HR/IR/LR mouse lines. We found that hyper-responsiveness to stressors was associated with psychomotor alterations (increased locomotor activity and exploration towards the end of the resting period), resembling symptoms like restlessness, sleep continuity disturbances and early awakenings that are commonly observed in melancholic depression. Additionally, HR mice also showed neuroendocrine abnormalities similar to symptoms of MD patients such as reduced amplitude of the circadian glucocorticoid rhythm and elevated trough levels. The sleep-EEG analyses, furthermore, revealed changes in rapid eye movement (REM) and non-REM sleep as well as slow wave activity, indicative of reduced sleep efficacy and REM sleep disinhibition in HR mice.Thus, we could show that by selectively breeding mice for extremes in stress reactivity, clinically relevant endophenotypes of MD can be modelled. Given the importance of rhythmicity and sleep disturbances as biomarkers of MD, both animal and clinical studies on the interaction of behavioural, neuroendocrine and sleep parameters may reveal molecular pathways that ultimately lead to the discovery of new targets for antidepressant drugs tailored to match specific pathologies within MD

    Chronic escitalopram treatment attenuated the accelerated rapid eye movement sleep transitions after selective rapid eye movement sleep deprivation: a model-based analysis using Markov chains

    Get PDF
    BackgroundShortened rapid eye movement (REM) sleep latency and increased REM sleep amount are presumed biological markers of depression. These sleep alterations are also observable in several animal models of depression as well as during the rebound sleep after selective REM sleep deprivation (RD). Furthermore, REM sleep fragmentation is typically associated with stress procedures and anxiety. The selective serotonin reuptake inhibitor (SSRI) antidepressants reduce REM sleep time and increase REM latency after acute dosing in normal condition and even during REM rebound following RD. However, their therapeutic outcome evolves only after weeks of treatment, and the effects of chronic treatment in REM-deprived animals have not been studied yet.ResultsChronic escitalopram- (10 mg/kg/day, osmotic minipump for 24 days) or vehicle-treated rats were subjected to a 3-day-long RD on day 21 using the flower pot procedure or kept in home cage. On day 24, fronto-parietal electroencephalogram, electromyogram and motility were recorded in the first 2 h of the passive phase. The observed sleep patterns were characterized applying standard sleep metrics, by modelling the transitions between sleep phases using Markov chains and by spectral analysis.Based on Markov chain analysis, chronic escitalopram treatment attenuated the REM sleep fragmentation [accelerated transition rates between REM and non-REM (NREM) stages, decreased REM sleep residence time between two transitions] during the rebound sleep. Additionally, the antidepressant avoided the frequent awakenings during the first 30 min of recovery period. The spectral analysis showed that the SSRI prevented the RD-caused elevation in theta (5 inverted question mark9 Hz) power during slow-wave sleep. Conversely, based on the aggregate sleep metrics, escitalopram had only moderate effects and it did not significantly attenuate the REM rebound after RD.ConclusionIn conclusion, chronic SSRI treatment is capable of reducing several effects on sleep which might be the consequence of the sub-chronic stress caused by the flower pot method. These data might support the antidepressant activity of SSRIs, and may allude that investigating the rebound period following the flower pot protocol could be useful to detect antidepressant drug response. Markov analysis is a suitable method to study the sleep pattern
    corecore