46 research outputs found

    Testing Human Sperm Chemotaxis: How to Detect Biased Motion in Population Assays

    Get PDF
    Biased motion of motile cells in a concentration gradient of a chemoattractant is frequently studied on the population level. This approach has been particularly employed in human sperm chemotactic assays, where the fraction of responsive cells is low and detection of biased motion depends on subtle differences. In these assays, statistical measures such as population odds ratios of swimming directions can be employed to infer chemotactic performance. Here, we report on an improved method to assess statistical significance of experimentally determined odds ratios and discuss the strong impact of data correlations that arise from the directional persistence of sperm swimming

    Behavioral Mechanism during Human Sperm Chemotaxis: Involvement of Hyperactivation

    Get PDF
    When mammalian spermatozoa become capacitated they acquire, among other activities, chemotactic responsiveness and the ability to exhibit occasional events of hyperactivated motility—a vigorous motility type with large amplitudes of head displacement. Although a number of roles have been proposed for this type of motility, its function is still obscure. Here we provide evidence suggesting that hyperactivation is part of the chemotactic response. By analyzing tracks of spermatozoa swimming in a spatial chemoattractant gradient we demonstrate that, in such a gradient, the level of hyperactivation events is significantly lower than in proper controls. This suggests that upon sensing an increase in the chemoattractant concentration capacitated cells repress their hyperactivation events and thus maintain their course of swimming toward the chemoattractant. Furthermore, in response to a temporal concentration jump achieved by photorelease of the chemoattractant progesterone from its caged form, the responsive cells exhibited a delayed turn, often accompanied by hyperactivation events or an even more intense response in the form of flagellar arrest. This study suggests that the function of hyperactivation is to cause a rather sharp turn during the chemotactic response of capacitated cells so as to assist them to reorient according to the chemoattractant gradient. On the basis of these results a model for the behavior of spermatozoa responding to a spatial chemoattractant gradient is proposed

    Phytoremediation using Aquatic Plants

    Get PDF

    Phagocytosis of human post-capacitated spermatozoa by macrophages

    No full text

    Generation and comparative genomics of synthetic dengue viruses

    No full text
    Abstract Background Synthetic virology is an important multidisciplinary scientific field, with emerging applications in biotechnology and medicine, aiming at developing methods to generate and engineer synthetic viruses. In particular, many of the RNA viruses, including among others the Dengue and Zika, are widespread pathogens of significant importance to human health. The ability to design and synthesize such viruses may contribute to exploring novel approaches for developing vaccines and virus based therapies. Results Here we develop a full multidisciplinary pipeline for generation and analysis of synthetic RNA viruses and specifically apply it to Dengue virus serotype 2 (DENV-2). The major steps of the pipeline include comparative genomics of endogenous and synthetic viral strains. Specifically, we show that although the synthetic DENV-2 viruses were found to have lower nucleotide variability, their phenotype, as reflected in the study of the AG129 mouse model morbidity, RNA levels, and neutralization antibodies, is similar or even more pathogenic in comparison to the wildtype master strain. Additionally, the highly variable positions, identified in the analyzed DENV-2 population, were found to overlap with less conserved homologous positions in Zika virus and other Dengue serotypes. These results may suggest that synthetic DENV-2 could enhance virulence if the correct sequence is selected. Conclusions The approach reported in this study can be used to generate and analyze synthetic RNA viruses both on genotypic and on phenotypic level. It could be applied for understanding the functionality and the fitness effects of any set of mutations in viral RNA and for editing RNA viruses for various target applications

    An intact acrosome is required for the chemotactic response to progesterone in mouse spermatozoa

    Get PDF
    Mammalian sperm become fertilization-competent in the oviduct, during a process known as capacitation that involves the acquisition of the ability to exocytose the acrosome but also the chemotactic responses—both of which contribute to successful fertilization. Chemotaxis is used by spermatozoa to orient and to locate the egg; the acrosome reaction facilitates sperm binding to and fusing with the egg membrane. Mammalian spermatozoa are able to sense picomolar concentrations of progesterone, which drives chemotactic behavior. The state of the acrosome during the chemotactic response, however, is unknown. Genetically modified mouse spermatozoa were employed in a chemotaxis assay under fluorescence microscopy to evaluate their acrosome status while swimming, allowing us to elucidate the acrosome integrity of sperm responding to progesterone-induced chemotaxis. We first showed that wild-type mouse spermatozoa chemotactically respond to a gradient of progesterone, and that the genetic modifications employed do not affect the chemotactic behavior of sperm to progesterone. Next, we found that acrosome-intact, but not acrosome-reacted, spermatozoa orient and respond to picomolar concentrations of progesterone and that chemotaxis normally occurs prior to the acrosome reaction. Our results suggest that premature commitment to acrosome exocytosis leads to navigation failure, so proper control and timing of the acrosome reaction is required for fertilization success and male fertility.Fil: Guidobaldi, Héctor Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones Biológicas y Tecnológicas. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Instituto de Investigaciones Biológicas y Tecnológicas; ArgentinaFil: Hirohashi, Noritaka. Shimane University; JapónFil: Cubilla, Marisa Angélica. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones Biológicas y Tecnológicas. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Instituto de Investigaciones Biológicas y Tecnológicas; ArgentinaFil: Buffone, Mariano Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Giojalas, Laura Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones Biológicas y Tecnológicas. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Instituto de Investigaciones Biológicas y Tecnológicas; Argentin
    corecore