114 research outputs found

    Effect of Single Overload Ratio and Stress Ratio on Fatigue Crack Growth

    Get PDF
    In this investigation, variation of cyclic loading effect on fatigue crack growth is studied. This study is performed on 2024 T351 and 7050-T74 aluminum alloys, used in aeronautical structures. The propagation model used in this study is NASGRO model. In constant amplitude loading (CA), the effect of stress ratio has been investigated. Fatigue life and fatigue crack growth rate were affected by this factor. Results showed an increasing in fatigue crack growth rates (FCGRs) with increasing stress ratio. Variable amplitude loading (VAL) can take many forms i.e with a single overload, overload band etc. The shape of these loads affects strongly the fracture life and FCGRs. The application of a single overload (ORL) decrease the FCGR and increase the delay crack length caused by the formation of a larger plastic zone compared to the plastic zone due without VAL. The fatigue behavior of the both material under single overload has been compared

    Prediction of Fatigue Crack Growth of Repaired Al-alloy Structures with Double Sides

    Get PDF
    AbstractDuring navigation, aircrafts are subject to fatigue damage. In order to rehabilitate damaged structures some techniques are often used to resolve this problem. Efficient repair technique, called composite patch repair, was used to reinforce the damaged structures and stop cracks. In this paper, effect of composite patch repair (Boron/Epoxy) on fatigue crack growth (FCG) was investigated on 2219 T62 Al-alloy. Effects of double patch repair in single notch tensile specimen (SENT) on FCG were studied and compared to single patch repair. Results show beneficial effect of patch repair on fatigue life and FCGR in comparison with the un-patched specimen. In addition, effect of mean stress characterized by stress ratio was highlighted. Fatigue behavior of investigated Al-alloy was compared

    RANDOM MAGNETIC FIELD EFFECTS ON ELECTRONIC PROPERTIES IN SUBSTITUTIONALLY AND TOPOLOGICALLY DISORDERED ALLOYS

    Get PDF
    We numerically investigate the effects of the random static magnetic field on a variety of electronic properties (localization of electron wavefunctions, spectral correlations and electrical conductance) in substitutionally and topologically disordered alloys. For this, we generate two-dimensional substitutionally disordered alloys and simulate three-dimensional amorphous structures by a molecular dynamics algorithm. As Hamiltonian models, we use the usual Anderson tight-binding model for the  substitutional  disorder and  a  tight-binding model with a set of explicit s-type orbitals for the topological disorder. We particularly focus on the effect of the random magnetic field on the localization of electron wavefunctions. In the presence of the substitutional disorder, we establish that the random magnetic field tends to delocalize the electron wavefunctions at the band center less than does the uniform magnetic field and it enhances the localization at the band edges. But, in the presence of the topological disorder, we observe the opposite effect. We show that the random magnetic field tends to delocalize the electron wavefunctions more than does the uniform magnetic field. In this respect, we demonstrate that the effect of the random magnetic field on the electron wavefunctions depends on the nature of the disorder.We numerically investigate the effects of the random static magnetic field on a variety of electronic properties (localization of electron wavefunctions, spectral correlations and electrical conductance) in substitutionally and topologically disordered alloys. For this, we generate two-dimensional substitutionally disordered alloys and simulate three-dimensional amorphous structures by a molecular dynamics algorithm. As Hamiltonian models, we use the usual Anderson tight-binding model for the  substitutional  disorder and  a  tight-binding model with a set of explicit s-type orbitals for the topological disorder. We particularly focus on the effect of the random magnetic field on the localization of electron wavefunctions. In the presence of the substitutional disorder, we establish that the random magnetic field tends to delocalize the electron wavefunctions at the band center less than does the uniform magnetic field and it enhances the localization at the band edges. But, in the presence of the topological disorder, we observe the opposite effect. We show that the random magnetic field tends to delocalize the electron wavefunctions more than does the uniform magnetic field. In this respect, we demonstrate that the effect of the random magnetic field on the electron wavefunctions depends on the nature of the disorder

    EFFECTS OF MAGHNITE NANOCLAY MODIFICATION AND COMPATIBILIZATION ON THE PHYSICAL AND MORPHOLOGICAL PROPERTIES OF POLY(VINYL CHLORIDE)/POLY(ETHYLENE-CO-VINYL ACETATE) BLENDS

    Get PDF
    In this research work poly(vinyl chloride)(PVC), ethylene vinyl acetate copolymer (EVA), and Maghnite nanoclay (MGT) were used to prepare PVC/EVA nanocomposites. The MGT clay was intercalated with octadecyltrimethylammonium chloride (ODTMA) and grafted with                 γ-aminopropyltriethoxysilane (APTES). The blend nanocomposites were prepared through the melt mixing of PVC/EVA blend at a weight ratio of 50/50 (wt%/wt%) with 20 wt% of compatibilizer; ethylene vinyl acetate grafted with an alcohol (EVA-g-OH) and 3 wt% of modified MGT clay using a Brabender plastograph. The nanocomposites so prepared were characterized using X-ray diffraction, TGA/DTA, mechanical tests and SEM. The results showed that when PVC was blended with EVA, with the modified MGT and with the compatibilizer, synergistic effects in the thermal stability and mechanical properties were observed

    Probabilistic representation for solutions of an irregular porous media type equation: the degenerate case

    Get PDF
    We consider a possibly degenerate porous media type equation over all of Rd\R^d with d=1d = 1, with monotone discontinuous coefficients with linear growth and prove a probabilistic representation of its solution in terms of an associated microscopic diffusion. This equation is motivated by some singular behaviour arising in complex self-organized critical systems. The main idea consists in approximating the equation by equations with monotone non-degenerate coefficients and deriving some new analytical properties of the solution

    Bisphenol A exposure in Mexico City and risk of prematurity: a pilot nested case control study

    Get PDF
    Abstract Background Presence of Bisphenol A (BPA) has been documented worldwide in a variety of human biological samples. There is growing evidence that low level BPA exposure may impact placental tissue development and thyroid function in humans. The aim of this present pilot study was to determine urinary concentrations of BPA during the last trimester of pregnancy among a small subset of women in Mexico City, Mexico and relate these concentrations to risk of delivering prematurely. Methods A nested case-control subset of 60 participants in the Early Life Exposure in Mexico to ENvironmental Toxicants (ELEMENT) study in Mexico City, Mexico were selected based on delivering less than or equal to 37 weeks of gestation and greater than 37 weeks of gestation. Third trimester archived spot urine samples were analyzed by online solid phase extraction coupled with high performance liquid chromatography isotope dilution tandem mass spectrometry. Results BPA was detected in 80.0% (N = 48) of the urine samples; total concentrations ranged from < 0.4 μg/L to 6.7 μg/L; uncorrected geometric mean was 1.52 μg/L. The adjusted odds ratio of delivering less than or equal to 37 weeks in relation to specific gravity adjusted third trimester BPA concentration was 1.91 (95%CI 0.93, 3.91, p-value = 0.08). When cases were further restricted to births occurring prior to the 37th week (n = 12), the odds ratio for specific-gravity adjusted BPA was larger and statistically significant (p < 0.05). Conclusions This is the first study to document measurable levels of BPA in the urine of a population of Mexican women. This study also provides preliminary evidence, based on a single spot urine sample collected during the third trimester, that pregnant women who delivered less than or equal to 37 weeks of gestation and prematurely (< 37 weeks) had higher urinary concentrations of BPA compared to women delivering after 37 weeks.http://deepblue.lib.umich.edu/bitstream/2027.42/78251/1/1476-069X-9-62.xmlhttp://deepblue.lib.umich.edu/bitstream/2027.42/78251/2/1476-069X-9-62.pdfPeer Reviewe

    Self-similar extinction for a diffusive Hamilton-Jacobi equation with critical absorption

    Get PDF
    International audienceThe behavior near the extinction time is identified for non-negative solutions to the diffusive Hamilton-Jacobi equation with critical gradient absorption ∂_t u − ∆_p u + |∇u|^{p−1} = 0 in (0, ∞) × R^N , and fast diffusion 2N/(N + 1) < p < 2. Given a non-negative and radially symmetric initial condition with a non-increasing profile which decays sufficiently fast as |x| → ∞, it is shown that the corresponding solution u to the above equation approaches a uniquely determined separate variable solution of the form U (t, x) = (T_e − t)^{1/(2−p)} f_* (|x|), (t, x) ∈ (0, T_e) × R^N , as t → T_e , where T_e denotes the finite extinction time of u. A cornerstone of the convergence proof is an underlying variational structure of the equation. Also, the selected profile f_* is the unique non-negative solution to a second order ordinary differential equation which decays exponentially at infinity. A complete classification of solutions to this equation is provided, thereby describing all separate variable solutions of the original equation. One important difficulty in the uniqueness proof is that no monotonicity argument seems to be available and it is overcome by the construction of an appropriate Pohozaev functional

    Ultrasound modulates neuronal potassium currents via ionotropic glutamate receptors

    Get PDF
    Background Focused ultrasound stimulation (FUS) has the potential to provide non-invasive neuromodulation of deep brain regions with unparalleled spatial precision. However, the cellular and molecular consequences of ultrasound stimulation on neurons remains poorly understood. We previously reported that ultrasound stimulation induces increases in neuronal excitability that persist for hours following stimulation in vitro. In the present study we sought to further elucidate the molecular mechanisms by which ultrasound regulates neuronal excitability and synaptic function. Objectives To determine the effect of ultrasound stimulation on voltage-gated ion channel function and synaptic plasticity. Methods Primary rat cortical neurons were exposed to a 40 s, 200 kHz pulsed ultrasound stimulus or sham-stimulus. Whole-cell patch clamp electrophysiology, quantitative proteomics and high-resolution confocal microscopy were employed to determine the effects of ultrasound stimulation on molecular regulators of neuronal excitability and synaptic function. Results We find that ultrasound exposure elicits sustained but reversible increases in whole-cell potassium currents. In addition, we find that ultrasound exposure activates synaptic signalling cascades that result in marked increases in excitatory synaptic transmission. Finally, we demonstrate the requirement of ionotropic glutamate receptor (AMPAR/NMDAR) activation for ultrasound-induced modulation of neuronal potassium currents. Conclusion These results suggest specific patterns of pulsed ultrasound can induce contemporaneous enhancement of both neuronal excitability and synaptic function, with implications for the application of FUS in experimental and therapeutic settings. Further study is now required to deduce the precise molecular mechanisms through which these changes occur
    • 

    corecore