13 research outputs found

    One step electrodeposition of Ag-decorated ZnO nanowires

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/s10008-016-3476-0.A new route for synthesizing Ag-decorated ZnO nanowires (NWs) on conductive glass substrates using a one-step electrodeposition technique is described here. The structural, optical, and photoelectrochemical properties of Ag-decorated ZnO nanowires were studied in detail using techniques such X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy, UV-visible spectroscopy, photoluminescence, and photoelectrochemical measurements. Both pure and Ag-decorated ZnO nanowires were found to crystallize in the wurtzite structure, irrespective of their Ag contents. Increasing the Ag content from pure ZnO NWs to 3% Ag ZnO NWs decreases the photoluminescence intensity, shifts the optical band gap to the red, and increases the photocurrent up to threefold. This behavior was attributed to the surface plasmon resonance effect induced by the Ag nanoparticles, which inhibits charge recombination and improves charge transport on the ZnO surface.B.S. acknowledges the Nanomaterials and Systems Laboratory for Renewable Energies, Research and Technology Centre of Energy Technoparc Borj Cedria for financial support. This work was supported by the Ministerio de Economia y Competitividad (ENE2013-46624-C4-4-R) and the Generalitat Valenciana (Prometeus 2014/044).Slimi, B.; Ben Assaker, I.; Kriaa, A.; MarĂ­, B.; Chtourou, R. (2017). One step electrodeposition of Ag-decorated ZnO nanowires. Journal of Solid State Electrochemistry. 21(5):1253-1261. https://doi.org/10.1007/s10008-016-3476-0S12531261215Morrison SR, Freund T (1967) J Chem Phys 47:1543–1551Studenikin SA, Golego N, Cocivera M (1998) J Appl Phys 83:2104–2111Look DC, Reynolds DC, Hemsky JW, Jones RL, Sizelove JR (1999) J Appl Phys Lett 75:811–813Ng HT, Han J, Yamada T, Nguyen P, Chen YP, Meyyappan M (2004) Nano Lett 4:1247–1252Chang PC, Fan ZY, Chien CJ, Stichtenoth D, Ronning C, Lu JG (2006) Appl Phys Lett 89:133113–133116Wang X, Song J, Liu J, Wang ZL (2007) Science 316:102–105Janotti A, Van de Walle CG (2009) Rep Prog Phys 72:126501–126530Thomas MA, Sun WW, Cui JB (2012) J Phys Chem C 116:6383–6391Yin X, Que W, Fei D, Shen F, Guo Q (2012) J Alloys Compd 524:13–21Tan ST, AlZayed NS, Lakshminarayana G, Naumar F, Umar AA, Oyama M, Myronchuk G, Kityk IV (2014) Phys E 61:23–27Wen LB, Huang YW, Li SB (1987) J Appl Phys 62:2295–2297Gurav KV, Fulari VJ, Patil UM, Lokhande CD, Joo OS (2010) Appl Surf Sci 256:2680–2685Kong XY, Wang ZL (2003) Nano Lett 3:1625–1631Kim K, Song YW, Chang S, Kim IH, Kim S, Lee SY (2009) Thin Solid Films 518:1190–1193Guo Z, Zhao D, Liu Y, Shen D, Zhang J, Li B (2008) Appl Phys Lett 93:163501–163504Hatch SM, Briscoe J, Dunn S (2013) Adv Mater 25:867–871Tarwal NL, Patil PS (2011) Electrochim Acta 56:6510–6516Fu M, Li S, Yao J, Wu H, He D, Wang Y (2013) J Porous Mater 20:1485–1489Haldar KK, Sen T, Patra A (2008) J Phys Chem C 112:11650–116506Xie J, Wu Q (2010) Mater Lett 64:389–392Yuan J, Choo ESG, Tang X, Sheng Y, Ding J, Xue J (2010) Nanotechnology 21:185606–185616Sahu DR, Liu CP, Wang RC, Kuo CL, Huang JL (2012) J Appl Ceram Technol 25:1–25Subramanian V, Wolf EE, Kamat PV (2003) J Phys Chem B 107:7479–7485Zhang D, Chava S, Berven C, Lee SK, Devitt R, Katkanant V (2010) Appl Phys A 100:145–150Zhu G, Yang R, Wang S, Wang ZL (2010) Nano Lett 10:3151–3155Mute A, Peres M, Peiris TC, Lourenço AC, Jensen LR, Monteiro T (2010) J Nanosci Nanotechnol 10:2669–2673Wang K, Chen J, Zhou W, Zhang Y, Yan Y, Pern J, Mascarenhas A (2008) Adv Mater 20:3248PauportĂ© T, Bataille G, Joulaud L, Vermersch FJ (2010) J Phys Chem C 114:194–202Wang T, Jiao Z, Chen T, Li Y, Ren W, Lin S, Lu G, Ye J, Bi Y (2013) Nanoscale 5:7552–7557Brayek A, Ghoul M, Souissi A, Ben Assaker I, Lecoq H, Nowak S, Chaguetmi S, Ammar S, Oueslati M, Chtourou R (2014) Mater Lett 129:142–145Paunovic M, Schlesinger M (2006) Fundamentals of electrochemical deposition. Wiley, New YorkPauporte T, Lupan O, Zhang J, Tugsuz T, Ciofini I, Labat F, Viana B (2015) ACS Appl Mater Interfaces 7:11871–11880Lupan O, Cretu V, Postica V, Ahmadi M, Cuenya RB, Chow L, Tiginyanu I, Viana B, PauportĂ© T, Adelung R (2016) Sensors Actuators B 223:893–903Ghoul M, Braiek B, Brayek A, Ben Assaker I, Khalifa N, Ben Naceur J, Souissi A, Lamouchi A, Ammar S, Chtourou R (2015) J Alloys Compd 647:660–664Messaoudi O, Makhlouf H, Souissi A, Ben Assaker I, Amiri G, Bardaoui A, Oueslati M, Bechelany M, Chtourou R (2015) Appl Surf Sci 343:148–152Song J, Lim S (2007) J Phys Chem C 111:596–600Wang H, Baek S, Song J, Lee J, Lim S (2008) Nanotechnology 19:075607–075613Hsu MH, Chang CJ (2014) J Hazard Mater 278:444–453Ibănescu M, MuƟat V, Textor T, Badilita V, Mahltig B (2014) J Alloys Compd 610:244–249Joshi MK, Pant HR, Kim HJ, Kim JH, Kim CS (2014) Colloids Surf A 446:102–108Zhu H, Yang D, Zhang H (2006) Mater Lett 60:2686–2689Cullity BD (1978) Elements of X-ray diffraction, 2nd edn. Addison Wesley, Reading, pp 162–165Chai B, Wang X, Cheng S, Zhou H, Zhang F (2014) Ceram Int 40:429–435Su L, Qin N (2015) Ceram Int 41:2673–2679Shanmuganathan G, Shameem IB, Krishnan S, Ranganathan B (2013) J Alloys Compd 562:187–193Tauc T, Grigorvici R, Vancu A (1996) Physical Status Solidi B 15:627–637Zhang XL, Zhao JL, Wang SG, Dai HT, Sun XW (2013) Proc SPIE 8641:86411NZhou XD, Xiao XH, Xu JX, Cai GX, Ren F, Jiang CZ (2011) Europhys Lett 93:57009–57015Zhu J, Wang Y, Huang L (2005) Mater Chem Phys 93:383–387Chalana SR, Ganesan V, Pillai VPM (2015) Appl Phys Adv 5:107207–107224Udom I, Zhang Y, Ram MK, Stefanakos EK, Hepp AF, Elzein R, Schlaf R, Goswami DY (2014) Thin Solid Films 564:258–263Nour ES, Echresh A, Liu X, Broitman E, Willander M, Nur O (2015) Appl Phys Adv 5:077163–077173Sun T, Qiu J, Liang C (2008) J Phys Chem C 112:715–721Liu HR, Shao GX, Zhao JF, Zhang ZX, Zhang Y, Liang J, Liu XG, Jia HS, Xu BS (2012) J Phys Chem 116:16182–16190ManjĂłn FJ, Mollar M, HernĂĄndez-Fenollosa MA, MarĂ­ B, Lauck R, Cardona M (2003) Solid State Commun 128:35–39Lu J, Xu C, Dai J, Li J, Wang Y, Lin Y, Li P (2015) Nanoscale 7:3396–3403Karyaoui M, Mhamdi A, Kaouach H, Labidi A, Boukhachem A, Boubaker K, Amlouk M, Chtourou R (2015) Mater Sci Semicond Process 30:255–26

    Synthesis and characterization of perovskite FAPbBr(3-x) I (x) thin films for solar cells

    Full text link
    [EN] FAPbI3, FAPbBr3, and FAPbBr3-xIx perovskite thin films were produced in a single step from a solution containing a mixture of FAI, PbI2, FABr, and PbBr2 (FA = formamidinium). FAPbBr3-xIx perovskite thin films were deposited onto ITO-coated glass substrates by spin coating. X-ray diffraction analyses confirmed that these thin-film perovskites crystallize in the cubic phase (Pm-3 m) for all composition range 0 B x B 3. Mixed lead perovskites showed a high absorbance in the UVÂżVis range. The optical band gap was estimated from spectral absorbance measurements. It was found that the onset of the absorption edge for FAPbBr3ÂżxIx thin films ranges between 1.47 and 2.20 eV for x = 0 and x = 3, respectively. Photoluminescence emission energies for mixed halide perovskites were also dependent on their composition and presented intermediate values from 810.4 nm for FAPbI3 to 547.3 nm for FAPbBr3.This work was supported by Ministerio de Economia y Competitividad (ENE2016-77798-C4-2-R) and Generalitat valenciana (Prometeus 2014/044).Slimi, B.; Mollar GarcĂ­a, MA.; Ben Assaker, I.; Kriaa, A.; Chtourou, R.; MarĂ­, B. (2017). Synthesis and characterization of perovskite FAPbBr(3-x) I (x) thin films for solar cells. Monatshefte fĂŒr Chemie - Chemical Monthly. 148(5):835-844. https://doi.org/10.1007/s00706-017-1958-0S835844148

    SynthĂšse Ă©lectrochimique de films minces d'hydroxydes doubles lamellaires

    No full text
    Conférence du 02 au 06 Juillet 2007. Communication par affiche

    Perovskite FA1-xMAxPbI3 for solar cells: films formation and properties

    Full text link
    [EN] Organic-inorganic hybrid perovskite formamidinium lead triiodide NH2CHNH2PbI3 (FAPbI3), methylammonium lead triiodide CH3NH3PbI3 (MAPbI3) and formamidinium methylammonium lead triiodide (NH2CHNH2)1-x(CH3NH2)xPbI3 (FA1-xMAxPbI3) thin films were synthesized and deposited on indium tin oxide glass substrates by spin coating process. Thin films of mixed FA1-xMAxPbI3 (x = 0-1) perovskites obtained by mixing FAPbI3 and MAPbI3 in different proportions. The morphological, structural and optical proprieties of all synthetized perovskites have been analyzed as a function of the MA/FA ratio. X-ray diffraction analyses indicated the formation a cubic perovskite phase with space group Pm-3m in the composition range 0 Âż x Âż 1. Mixed perovskites FAMAPbI3 showed a high absorbance in the infrared region 780-900 nm. The band gap energy estimated from absorbance spectral measurements for FAMAPbI3 thin films ranges from 1.50 eV for FAPbI3 to 1.56 eV for MAPbI3, respectively. The overall PL emissions of mixed FA/MA perovskite thin films are located in intermediate values between 773 nm and 810 nm.This work was supported by Ministerio de Economia y Competitividad (ENE2013-46624-C4-4-R) and Generalitat valenciana (Prometeus 2014/044).Slimi, B.; Mollar GarcĂ­a, MA.; Ben Assaker, I.; Kriaa, A.; Chtourou, R.; MarĂ­, B. (2016). Perovskite FA1-xMAxPbI3 for solar cells: films formation and properties. Energy Procedia. 102:87-95. https://doi.org/10.1016/j.egypro.2016.11.322S879510

    Synthesis and characterization of ZnO/Cu<sub>2</sub>O core–shell nanowires grown by two-step electrodeposition method

    No full text
    International audienceZnO/Cu2O core/shell nanowires have been grown by two-step electrodeposition method on ITO-coated glass substrates. The sample's morphology was explored by means of scanning electron microscopy (SEM). SEM images confirm the homogeneity of the nanowires and the presence of Cu2O shell on ZnO core. X-ray diffraction and Raman scattering measurements were used to investigate the purity and the crystallinity of the samples. Optical transmission measurements reveal an additional contribution at about 1.7&nbsp;eV attributed to the type-II interfacial transition witch confirms the advantage of using the ZnO/Cu2O structure in photovoltaic application

    The structural and the photoelectrochemical properties of ZnO–ZnS/ITO 1D hetero-junctions prepared by tandem electrodeposition and surface sulfidation: on the material processing limits

    No full text
    International audienceZnO–ZnS 1D hetero-nanostructures were prepared by an easy and scalable processing route. It consists of ZnO nanorod electrodeposition on ITO substrate and surface sulfidation by ion exchange in an aqueous Na 2 S solution. Increasing the treatment contact time (t c) from 8 to 48 h involves different ZnS growth mechanisms leading to different structural and microstructural rod characteristics, even if the overall size does not change significantly. Grazing X-ray diffraction, high-resolution microscopy, energy-dispersive spectrometry and X-ray photoelectron spectroscopy describe the outer surface layer as a poly-and nanocrystalline ZnS blende shell whose thickness and roughness increase with t c. The ZnO wurtzite–ZnS blende interface goes from continuous and dense, at short t c , to discontinuous and porous at long t c , indicating that ZnS formation proceeds in a more complex way than a simple S 2À /O 2À ion exchange over the treatment time. This feature has significant consequences for the photoelectrochemical performance of these materials when they are used as photoanodes in a typical light-assisted water splitting experiment. A photocurrent (J p) fluctuation of 45% for less than 5 min of operation is observed for the sample prepared with a long sulfidation time while it does not exceed 15% for that obtained with a short one, underlining the importance of the material processing conditions on the preparation of valuable photoanodes

    Photoelectrochemical properties of nanocrystalline ZnS discrete versus continuous coating of ZnO nanorods prepared by electrodeposition

    No full text
    International audienceWe developed nanostructured photoanodes for photoelectrochemical (PEC) water splitting and hydrogen generation. They are based on ZnO nanorods electrodeposited on conductive ITO glass on which ZnO@ZnS heterojunctions were formed using two different approaches. In the first case, the ZnO nanorods were sulfided by a prolonged contact with Na2S aqueous solution, while in the second one, they were immersed in an alcoholic solution of 2 nm sized polyol-made ZnS quantum dots (QDs). Transmission electron microscopy showed that a continuous thin layer of ZnS is formed around ZnO leading to a core@shell structure in the first case, while discrete QD aggregates were grafted at the surface of these rods leading to a kind of tologyin, in the second case. PEC properties of both composite films were measured, using a home-made electrochemical cell and illuminating the anodes with a Xenon lamp. A net enhancement of the photocurrent was observed when the ZnS coating was processed, suggesting a low carrier recombination rate, a higher efficiency toward water oxidation, and then electron transfer to the used cathode (Pt wire) for H+ reduction and H2 generation. Interestingly, the performances of the two composite films were found to be comparable, suggesting that a discrete coating of the ZnO nanorods by a small amount of preformed ZnS QDs is enough to improve their properties for the desired application
    corecore