89 research outputs found
The properties of ”dark” ΛCDM halos in the Local Group
We examine the baryon content of low-mass Λ cold dark matter (ΛCDM) haloes (108 < M200/M⊙ < 5 × 109) using the APOSTLE cosmological hydrodynamical simulations. Most of these systems are free of stars and have a gaseous content set by the combined effects of cosmic reionization, which imposes a mass-dependent upper limit, and of ram-pressure stripping, which reduces it further in high-density regions. Haloes mainly affected by reionization (RELHICS; REionization-Limited H I Clouds) inhabit preferentially low-density regions and make up a population where the gas is in hydrostatic equilibrium with the dark matter potential and in thermal equilibrium with the ionizing UV background. Their thermodynamic properties are well specified, and their gas density and temperature profiles may be predicted in detail. Gas in RELHICS is nearly fully ionized but with neutral cores that span a large range of H I masses and column densities and have negligible non-thermal broadening. We present predictions for their characteristic sizes and central column densities; the massive tail of the distribution should be within reach of future blind H I surveys. Local Group RELHICS (LGRs) have some properties consistent with observed Ultra Compact High Velocity Clouds (UCHVCs) but the sheer number of the latter suggests that most UCHVCs are not RELHICS. Our results suggest that LGRs (i) should typically be beyond 500 kpc from the Milky Way or M31; (ii) have positive Galactocentric radial velocities; (iii) H I sizes not exceeding 1 kpc, and (iv) should be nearly round. The detection and characterization of RELHICS would offer a unique probe of the small-scale clustering of CDM
Discretization of the Region of Interest
[EN]The meccano method was recently introduced to construct simultaneously tetrahedral meshes and volumetric parameterizations of solids. The method requires the information of the solid geometry that is defined by its surface, a meccano, i.e., an outline of the solid defined by connected polyhedral pieces, and a tolerance that fixes the desired approximation of the solid surface. The method builds an adaptive tetrahedral mesh of the solid (physical domain) as a deformation of an appropriate tetrahedral mesh of the meccano (parametric domain). The main stages of the procedure involve an admissible mapping between the meccano and the solid boundaries, the nested Kossaczký’s refinement, and our simultaneous untangling and smoothing algorithm. In this chapter, we focus on the application of the method to build tetrahedral meshes over complex terrain, that is interesting for simulation of environmental processes. A digital elevation map of the terrain, the height of the domain, and the required orography approximation are given as input data. In addition, the geometry of buildings or stacks can be considered. In these applications, we have considered a simple cuboid as meccano.Ministerio de Economía y Competitividad, Gobierno de España; Fondos FEDER; Departamento de Educación, Junta de Castilla y León; CONACYT-SENER, Fondo Sectorial CONACYT SENER HIDROCARBUROS
Planetary population synthesis
In stellar astrophysics, the technique of population synthesis has been
successfully used for several decades. For planets, it is in contrast still a
young method which only became important in recent years because of the rapid
increase of the number of known extrasolar planets, and the associated growth
of statistical observational constraints. With planetary population synthesis,
the theory of planet formation and evolution can be put to the test against
these constraints. In this review of planetary population synthesis, we first
briefly list key observational constraints. Then, the work flow in the method
and its two main components are presented, namely global end-to-end models that
predict planetary system properties directly from protoplanetary disk
properties and probability distributions for these initial conditions. An
overview of various population synthesis models in the literature is given. The
sub-models for the physical processes considered in global models are
described: the evolution of the protoplanetary disk, the planets' accretion of
solids and gas, orbital migration, and N-body interactions among concurrently
growing protoplanets. Next, typical population synthesis results are
illustrated in the form of new syntheses obtained with the latest generation of
the Bern model. Planetary formation tracks, the distribution of planets in the
mass-distance and radius-distance plane, the planetary mass function, and the
distributions of planetary radii, semimajor axes, and luminosities are shown,
linked to underlying physical processes, and compared with their observational
counterparts. We finish by highlighting the most important predictions made by
population synthesis models and discuss the lessons learned from these
predictions - both those later observationally confirmed and those rejected.Comment: 47 pages, 12 figures. Invited review accepted for publication in the
'Handbook of Exoplanets', planet formation section, section editor: Ralph
Pudritz, Springer reference works, Juan Antonio Belmonte and Hans Deeg, Ed
Recommended from our members
Attribution of 2012 extreme climate events: does air-sea interaction matter?
In 2012, extreme anomalous climate conditions occurred around the globe. Large areas of North America experienced an anomalously hot summer, with large precipitation deficits inducing severe drought. Over Europe, the summer of 2012 was marked by strong precipitation anomalies with the UK experiencing its wettest summer since 1912 while Spain suffered severe drought. What caused these extreme climate conditions in various regions in 2012? This study compares attribution conclusions for 2012 climate anomalies relative to a baseline period (1964–1981) based on two sets of parallel experiments with different model configurations (with coupling to an ocean mixed layer model or with prescribed sea surface temperatures) to assess whether attribution conclusions concerning the climate anomalies in 2012 are sensitive to the representation of air-sea interaction. Modelling results indicate that attribution conclusions for large scale surface air temperature (SAT) changes in both boreal winter and summer are generally robust and not very sensitive to air-sea interaction. This is especially true over southern Europe, Eurasia, North America, South America, and North Africa. Some other responses also appear to be insensitive to air-sea interaction: for example, forced increases in precipitation over northern Europe and Sahel, and reduced precipitation over North America and the Amazon in boreal summer. However, the attribution of circulation and precipitation changes for some other regions exhibits a sensitivity to air-sea interaction. Results from the experiments including coupling to an ocean mixed layer model show a positive NAO-like circulation response in the Atlantic sector in boreal winter and weak changes in the East Asian summer monsoon and precipitation over East Asia. With prescribed sea surface temperatures, some different responses arise over these two regions. Comparison with observed changes indicates that the coupled simulations generally agree better with observations, demonstrating that attribution methods based on atmospheric general circulation models have limitations and may lead to erroneous attribution conclusions for regional anomalies in circulation, precipitation and surface air temperature
Phytoplankton across Tropical and Subtropical Regions of the Atlantic, Indian and Pacific Oceans
Postprint4,411
Global diversity and biogeography of deep-sea pelagic prokaryotes
The deep-sea is the largest biome of the biosphere, and contains more than half of the whole ocean/'s microbes. Uncovering their general patterns of diversity and community structure at a global scale remains a great challenge, as only fragmentary information of deep-sea microbial diversity exists based on regional-scale studies. Here we report the first globally comprehensive survey of the prokaryotic communities inhabiting the bathypelagic ocean using high-throughput sequencing of the 16S rRNA gene. This work identifies the dominant prokaryotes in the pelagic deep ocean and reveals that 50{\%} of the operational taxonomic units (OTUs) belong to previously unknown prokaryotic taxa, most of which are rare and appear in just a few samples. We show that whereas the local richness of communities is comparable to that observed in previous regional studies, the global pool of prokaryotic taxa detected is modest (\~{}3600 OTUs), as a high proportion of OTUs are shared among samples. The water masses appear to act as clear drivers of the geographical distribution of both particle-attached and free-living prokaryotes. In addition, we show that the deep-oceanic basins in which the bathypelagic realm is divided contain different particle-attached (but not free-living) microbial communities. The combination of the aging of the water masses and a lack of complete dispersal are identified as the main drivers for this biogeographical pattern. All together, we identify the potential of the deep ocean as a reservoir of still unknown biological diversity with a higher degree of spatial complexity than hitherto considered.En prensa8,951
Extent, intensity and drivers of mammal defaunation:a continental-scale analysis across the Neotropics
Neotropical mammal diversity is currently threatened by several chronic human-induced pressures. We compiled 1,029 contemporary mammal assemblages surveyed across the Neotropics to quantify the continental-scale extent and intensity of defaunation and understand their determinants based on environmental covariates. We calculated a local defaunation index for all assemblages—adjusted by a false-absence ratio—which was examined using structural equation models. We propose a hunting index based on socioenvironmental co-variables that either intensify or inhibit hunting, which we used as an additional predictor of defaunation. Mammal defaunation intensity across the Neotropics on average erased 56.5% of the local source fauna, with ungulates comprising the most ubiquitous losses. The extent of defaunation is widespread, but more incipient in hitherto relatively intact major biomes that are rapidly succumbing to encroaching deforestation frontiers. Assemblage-wide mammal body mass distribution was greatly reduced from a historical 95th-percentile of ~ 14 kg to only ~ 4 kg in modern assemblages. Defaunation and depletion of large-bodied species were primarily driven by hunting pressure and remaining habitat area. Our findings can inform guidelines to design transnational conservation policies to safeguard native vertebrates, and ensure that the “empty ecosystem” syndrome will be deterred from reaching much of the New World tropics
Shedding Light on the Galaxy Luminosity Function
From as early as the 1930s, astronomers have tried to quantify the
statistical nature of the evolution and large-scale structure of galaxies by
studying their luminosity distribution as a function of redshift - known as the
galaxy luminosity function (LF). Accurately constructing the LF remains a
popular and yet tricky pursuit in modern observational cosmology where the
presence of observational selection effects due to e.g. detection thresholds in
apparent magnitude, colour, surface brightness or some combination thereof can
render any given galaxy survey incomplete and thus introduce bias into the LF.
Over the last seventy years there have been numerous sophisticated
statistical approaches devised to tackle these issues; all have advantages --
but not one is perfect. This review takes a broad historical look at the key
statistical tools that have been developed over this period, discussing their
relative merits and highlighting any significant extensions and modifications.
In addition, the more generalised methods that have emerged within the last few
years are examined. These methods propose a more rigorous statistical framework
within which to determine the LF compared to some of the more traditional
methods. I also look at how photometric redshift estimations are being
incorporated into the LF methodology as well as considering the construction of
bivariate LFs. Finally, I review the ongoing development of completeness
estimators which test some of the fundamental assumptions going into LF
estimators and can be powerful probes of any residual systematic effects
inherent magnitude-redshift data.Comment: 95 pages, 23 figures, 3 tables. Now published in The Astronomy &
Astrophysics Review. This version: bring in line with A&AR format
requirements, also minor typo corrections made, additional citations and
higher rez images adde
- …