83 research outputs found

    Influenza nucleoprotein delivered with aluminium salts protects mice from an influenza virus that expresses an altered nucleoprotein sequence

    Get PDF
    Influenza virus poses a difficult challenge for protective immunity. This virus is adept at altering its surface proteins, the proteins that are the targets of neutralizing antibody. Consequently, each year a new vaccine must be developed to combat the current recirculating strains. A universal influenza vaccine that primes specific memory cells that recognise conserved parts of the virus could prove to be effective against both annual influenza variants and newly emergent potentially pandemic strains. Such a vaccine will have to contain a safe and effective adjuvant that can be used in individuals of all ages. We examine protection from viral challenge in mice vaccinated with the nucleoprotein from the PR8 strain of influenza A, a protein that is highly conserved across viral subtypes. Vaccination with nucleoprotein delivered with a universally used and safe adjuvant, composed of insoluble aluminium salts, provides protection against viruses that either express the same or an altered version of nucleoprotein. This protection correlated with the presence of nucleoprotein specific CD8 T cells in the lungs of infected animals at early time points after infection. In contrast, immunization with NP delivered with alum and the detoxified LPS adjuvant, monophosphoryl lipid A, provided some protection to the homologous viral strain but no protection against infection by influenza expressing a variant nucleoprotein. Together, these data point towards a vaccine solution for all influenza A subtypes

    The beta2 integrin CD11c distinguishes a subset of cytotoxic pulmonary T cells with potent antiviral effects in vitro and in vivo

    Get PDF
    BACKGROUND: The integrin CD11c is known as a marker for dendritic cells and has recently been described on T cells following lymphotropic choriomeningitis virus infection, a systemic infection affecting a multitude of organs. Here, we characterise CD11c bearing T cells in a murine model of localised pulmonary infection with respiratory syncytial virus (RSV). METHODS: Mice were infected intranasally with RSV and expression of Ξ²2 integrins and T lymphocyte activation markers were monitored by flow cytometry. On day 8 post RSV infection CD11c(+ )CD8(+ )and CD11c(- )CD8(+ )T cells were assessed for cytokine production, cytotoxic activity and migration. Expression of CD11c mRNA in CD8(+ )T cells was assessed by quantitative PCR. RESULTS: Following RSV infection CD11c(+ )CD8(+ )T cells were detectable in the lung from day 4 onwards and accounted for 45.9 Β± 4.8% of CD8(+ )T cells on day 8 post infection, while only few such cells were present in mediastinal lymph nodes, spleen and blood. While CD11c was virtually absent from CD8(+ )T cells in the absence of RSV infection, its mRNA was expressed in CD8(+ )T cells of both naΓ―ve and RSV infected mice. CD11c(+), but not CD11c(-), CD8(+ )T cells showed signs of recent activation, including up-regulation of CD11a and expression of CD11b and CD69 and were recruited preferentially to the lung. In addition, CD11c(+ )CD8(+ )T cells were the major subset responsible for IFNΞ³ production, induction of target cell apoptosis in vitro and reduction of viral titres in vivo. CONCLUSION: CD11c is a useful marker for detection and isolation of pulmonary antiviral cytotoxic T cells following RSV infection. It identifies a subset of activated, virus-specific, cytotoxic T cells that exhibit potent antiviral effects in vivo

    Simian-Human Immunodeficiency Infection – Is the Course Set in the Acute Phase?

    Get PDF
    Identifying early predictors of infection outcome is important for the clinical management of HIV infection, and both viral load and CD4+ T cell level have been found to be useful predictors of subsequent disease progression. Very high viral load or extensively depleted CD4+ T cells in the acute phase often result in failure of immune control, and a fast progression to AIDS. It is usually assumed that extensive loss of CD4+ T cells in the acute phase of HIV infection prevents the establishment of robust T cell help required for virus control in the chronic phase. We tested this hypothesis using viral load and CD4+ T cell number of SHIV-infected rhesus macaques. In acute infection, the lowest level of CD4+ T cells was a good predictor of later survival; animals having less than 3.3% of baseline CD4+ T cells progressed to severe disease, while animals with more than 3.3% of baseline CD4+ T cells experienced CD4+ T cell recovery. However, it is unclear if the disease progression was caused by early depletion, or was simply a result of a higher susceptibility of an animal to infection. We derived a simple relationship between the expected number of CD4+ T cells in the acute and chronic phases for a constant level of host susceptibility or resistance. We found that in most cases, the depletion of CD4+ T cells in chronic infection was consistent with the prediction from the acute CD4+ T cell loss. However, the animals with less than 3.3% of baseline CD4 T cells in the acute phase were approximately 20% more depleted late in the infection than expected based on constant level of virus control. This suggests that severe acute CD4 depletion indeed impairs the immune response

    Interplay between CD8Ξ±+ Dendritic Cells and Monocytes in Response to Listeria monocytogenes Infection Attenuates T Cell Responses

    Get PDF
    During the course of a microbial infection, different antigen presenting cells (APCs) are exposed and contribute to the ensuing immune response. CD8Ξ±+ dendritic cells (DCs) are an important coordinator of early immune responses to the intracellular bacteria Listeria monocytogenes (Lm) and are crucial for CD8+ T cell immunity. In this study, we examine the contribution of different primary APCs to inducing immune responses against Lm. We find that CD8Ξ±+ DCs are the most susceptible to infection while plasmacytoid DCs are not infected. Moreover, CD8Ξ±+ DCs are the only DC subset capable of priming an immune response to Lm in vitro and are also the only APC studied that do so when transferred into Ξ²2 microglobulin deficient mice which lack endogenous cross-presentation. Upon infection, CD11b+ DCs primarily secrete low levels of TNFΞ± while CD8Ξ±+ DCs secrete IL-12 p70. Infected monocytes secrete high levels of TNFΞ± and IL-12p70, cytokines associated with activated inflammatory macrophages. Furthermore, co-culture of infected CD8Ξ±+ DCs and CD11b+ DCs with monocytes enhances production of IL-12 p70 and TNFΞ±. However, the presence of monocytes in DC/T cell co-cultures attenuates T cell priming against Lm-derived antigens in vitro and in vivo. This suppressive activity of spleen-derived monocytes is mediated in part by both TNFΞ± and inducible nitric oxide synthase (iNOS). Thus these monocytes enhance IL-12 production to Lm infection, but concurrently abrogate DC-mediated T cell priming

    Protective Efficacy of Serially Up-Ranked Subdominant CD8+ T Cell Epitopes against Virus Challenges

    Get PDF
    Immunodominance in T cell responses to complex antigens like viruses is still incompletely understood. Some data indicate that the dominant responses to viruses are not necessarily the most protective, while other data imply that dominant responses are the most important. The issue is of considerable importance to the rational design of vaccines, particularly against variable escaping viruses like human immunodeficiency virus type 1 and hepatitis C virus. Here, we showed that sequential inactivation of dominant epitopes up-ranks the remaining subdominant determinants. Importantly, we demonstrated that subdominant epitopes can induce robust responses and protect against whole viruses if they are allowed at least once in the vaccination regimen to locally or temporally dominate T cell induction. Therefore, refocusing T cell immune responses away from highly variable determinants recognized during natural virus infection towards subdominant, but conserved regions is possible and merits evaluation in humans

    Post-Exposure Vaccination Improves Gammaherpesvirus Neutralization

    Get PDF
    Herpesvirus carriers transmit infection despite making virus-specific antibodies. Thus, their antibody responses are not necessarily optimal. An important question for infection control is whether vaccinating carriers might improve virus neutralization. The antibody response to murine gamma-herpesvirus-68 (MHV-68) blocks cell binding, but fails to block and even enhances an IgG Fc receptor-dependent infection of myeloid cells. Viral membrane fusion therefore remains intact. Although gH/gL-specific monoclonal antibodies can block infection at a post-binding step close to membrane fusion, gH/gL is a relatively minor antibody target in virus carriers. We show here that gH/gL-specific antibodies can block both Fc receptor-independent and Fc receptor-dependent infections, and that vaccinating virus carriers with a gH/gL fusion protein improves their capacity for virus neutralization both in vitro and in vivo. This approach has the potential to reduce herpesvirus transmission

    Influenza A Virus Infection of Human Primary Dendritic Cells Impairs Their Ability to Cross-Present Antigen to CD8 T Cells

    Get PDF
    Influenza A virus (IAV) infection is normally controlled by adaptive immune responses initiated by dendritic cells (DCs). We investigated the consequences of IAV infection of human primary DCs on their ability to function as antigen-presenting cells. IAV was internalized by both myeloid DCs (mDCs) and plasmacytoid DCs but only mDCs supported viral replication. Although infected mDCs efficiently presented endogenous IAV antigens on MHC class II, this was not the case for presentation on MHC class I. Indeed, cross-presentation by uninfected cells of minute amounts of endocytosed, exogenous IAV was ∼300-fold more efficient than presentation of IAV antigens synthesized by infected cells and resulted in a statistically significant increase in expansion of IAV-specific CD8 T cells. Furthermore, IAV infection also impaired cross-presentation of other exogenous antigens, indicating that IAV infection broadly attenuates presentation on MHC class I molecules. Our results suggest that cross-presentation by uninfected mDCs is a preferred mechanism of antigen-presentation for the activation and expansion of CD8 T cells during IAV infection

    Prolonged Antigen Presentation Is Required for Optimal CD8+ T Cell Responses against Malaria Liver Stage Parasites

    Get PDF
    Immunization with irradiated sporozoites is currently the most effective vaccination strategy against liver stages of malaria parasites, yet the mechanisms underpinning the success of this approach are unknown. Here we show that the complete development of protective CD8+ T cell responses requires prolonged antigen presentation. Using TCR transgenic cells specific for the malaria circumsporozoite protein, a leading vaccine candidate, we found that sporozoite antigen persists for over 8 weeks after immunizationβ€”a remarkable finding since irradiated sporozoites are incapable of replication and do not differentiate beyond early liver stages. Persisting antigen was detected in lymphoid organs and depends on the presence of CD11c+ cells. Prolonged antigen presentation enhanced the magnitude of the CD8+ T cell response in a number of ways. Firstly, reducing the time primed CD8+ T cells were exposed to antigen in vivo severely reduced the final size of the developing memory population. Secondly, fully developed memory cells expanded in previously immunized mice but not when transferred to naΓ―ve animals. Finally, persisting antigen was able to prime naΓ―ve cells, including recent thymic emigrants, to become functional effector cells capable of eliminating parasites in the liver. Together these data show that the optimal development of protective CD8+ T cell immunity against malaria liver stages is dependent upon the prolonged presentation of sporozoite-derived antigen

    Unique Type I Interferon Responses Determine the Functional Fate of Migratory Lung Dendritic Cells during Influenza Virus Infection

    Get PDF
    Migratory lung dendritic cells (DCs) transport viral antigen from the lungs to the draining mediastinal lymph nodes (MLNs) during influenza virus infection to initiate the adaptive immune response. Two major migratory DC subsets, CD103+ DCs and CD11bhigh DCs participate in this function and it is not clear if these antigen presenting cell (APC) populations become directly infected and if so whether their activity is influenced by the infection. In these experiments we show that both subpopulations can become infected and migrate to the draining MLN but a difference in their response to type I interferon (I-IFN) signaling dictates the capacity of the virus to replicate. CD103+ DCs allow the virus to replicate to significantly higher levels than do the CD11bhigh DCs, and they release infectious virus in the MLNs and when cultured ex-vivo. Virus replication in CD11bhigh DCs is inhibited by I-IFNs, since ablation of the I-IFN receptor (IFNAR) signaling permits virus to replicate vigorously and productively in this subset. Interestingly, CD103+ DCs are less sensitive to I-IFNs upregulating interferon-induced genes to a lesser extent than CD11bhigh DCs. The attenuated IFNAR signaling by CD103+ DCs correlates with their described superior antigen presentation capacity for naΓ―ve CD8+ T cells when compared to CD11bhigh DCs. Indeed ablation of IFNAR signaling equalizes the competency of the antigen presenting function for the two subpopulations. Thus, antigen presentation by lung DCs is proportional to virus replication and this is tightly constrained by I-IFN. The β€œinterferon-resistant” CD103+ DCs may have evolved to ensure the presentation of viral antigens to T cells in I-IFN rich environments. Conversely, this trait may be exploitable by viral pathogens as a mechanism for systemic dissemination

    Immunological resilience and biodiversity for prevention of allergic diseases and asthma

    Get PDF
    Increase of allergic conditions has occurred at the same pace with the Great Acceleration, which stands for the rapid growth rate of human activities upon earth from 1950s. Changes of environment and lifestyle along with escalating urbanization are acknowledged as the main underlying causes. Secondary (tertiary) prevention for better disease control has advanced considerably with innovations for oral immunotherapy and effective treatment of inflammation with corticosteroids, calcineurin inhibitors, and biological medications. Patients are less disabled than before. However, primary prevention has remained a dilemma. Factors predicting allergy and asthma risk have proven complex: Risk factors increase the risk, while protective factors counteract them. Interaction of human body with environmental biodiversity with micro-organisms and biogenic compounds as well as the central role of epigenetic adaptation in immune homeostasis have given new insight. Allergic diseases are good indicators of the twisted relation to environment. In various non-communicable diseases, the protective mode of the immune system indicates low-grade inflammation without apparent cause. Giving microbes, pro- and prebiotics, has shown some promise in prevention and treatment. The real-world public health programme in Finland (2008-2018) emphasized nature relatedness and protective factors for immunological resilience, instead of avoidance. The nationwide action mitigated the allergy burden, but in the lack of controls, primary preventive effect remains to be proven. The first results of controlled biodiversity interventions are promising. In the fast urbanizing world, new approaches are called for allergy prevention, which also has a major cost saving potential.Peer reviewe
    • …
    corecore