10 research outputs found

    Π‘ΠΎΠ»Π΅Π·Π½ΡŒ ΠšΡ€ΠΎΠ½Π° с ΠΈΠ·ΠΎΠ»ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹ΠΌ ΠΏΠΎΡ€Π°ΠΆΠ΅Π½ΠΈΠ΅ΠΌ ΠΆΠ΅Π»ΡƒΠ΄ΠΊΠ° ΠΊΠ°ΠΊ ΠΏΡ€ΠΈΠΌΠ΅Ρ€ Ρ€Π΅Π΄ΠΊΠΎΠ³ΠΎ Ρ„Π΅Π½ΠΎΡ‚ΠΈΠΏΠ° заболСвания: клиничСскоС наблюдСниС

    No full text
    Crohn's disease (CD), along with ulcerative colitis, is one of the predominant nosological forms of inflammatory bowel diseases. In CD, any part of the gastrointestinal tract can be affected; however, the process is commonly associated with terminal ileum or colon involvement. CD cases with isolated or mixed involvement of upper gastrointestinal tract (esophagus, stomach, and duodenum) are rare and least studied types of the disease. In isolated stomach involvement, the complaints are non-specific and include epigastric pain, gastric dyspepsia, early satiety, decreased appetite, and nausea. Isolated CD of upper gastrointestinal tract can be diagnosed after comprehensive work-up and always requires a high diagnostic level, including clinical, endoscopic and morphological one. We present a clinical case of CD with isolated stomach involvement in a 62-year-old woman. The diagnosis was confirmed by the histopathological findings of an epithelioid cell granuloma in the gastric antrum. Treatment with systemic corticosteroids reduced the disease clinical activity and improved the histological characteristics of the gastric biopsy sampled obtained by endoscopy. In this clinical case, there were specific macroscopic gastric lesions found at endoscopy in CD patients with upper gastrointestinal tract involvement, which is characterized by thickened longitudinal folding and linear grooves. This type of lesion has been described in the literature as β€œbamboo joint-like appearance”.Conclusion: Comprehensive assessment of clinical manifestations, endoscopic and histopathological specific features is crucial for the timely diagnosis and treatment of inflammatory bowel diseases.Π‘ΠΎΠ»Π΅Π·Π½ΡŒ ΠšΡ€ΠΎΠ½Π° (Π‘Πš) наряду с язвСнным ΠΊΠΎΠ»ΠΈΡ‚ΠΎΠΌ прСдставляСт собой ΠΎΠ΄Π½Ρƒ ΠΈΠ· ΠΏΡ€Π΅ΠΎΠ±Π»Π°Π΄Π°ΡŽΡ‰ΠΈΡ… нозологичСских Ρ„ΠΎΡ€ΠΌ Π² структурС Π²ΠΎΡΠΏΠ°Π»ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠΉ ΠΊΠΈΡˆΠ΅Ρ‡Π½ΠΈΠΊΠ°. ΠŸΡ€ΠΈ Π‘Πš ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ ΠΏΠΎΡ€Π°ΠΆΠ΅Π½Π° любая Ρ‡Π°ΡΡ‚ΡŒ ΠΆΠ΅Π»ΡƒΠ΄ΠΎΡ‡Π½ΠΎ-ΠΊΠΈΡˆΠ΅Ρ‡Π½ΠΎΠ³ΠΎ Ρ‚Ρ€Π°ΠΊΡ‚Π° (Π–ΠšΠ’), Π½ΠΎ ΠΎΠ±Ρ‹Ρ‡Π½ΠΎ процСсс связан с Π²ΠΎΠ²Π»Π΅Ρ‡Π΅Π½ΠΈΠ΅ΠΌ Ρ‚Π΅Ρ€ΠΌΠΈΠ½Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΎΡ‚Π΄Π΅Π»Π° подвздошной ΠΈΠ»ΠΈ толстой кишки. Π‘Π»ΡƒΡ‡Π°ΠΈ Π‘Πš с ΠΈΠ·ΠΎΠ»ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹ΠΌ ΠΈΠ»ΠΈ сочСтанным ΠΏΠΎΡ€Π°ΠΆΠ΅Π½ΠΈΠ΅ΠΌ Π²Π΅Ρ€Ρ…Π½ΠΈΡ… ΠΎΡ‚Π΄Π΅Π»ΠΎΠ² Π–ΠšΠ’ (ΠΏΠΈΡ‰Π΅Π²ΠΎΠ΄Π°, ΠΆΠ΅Π»ΡƒΠ΄ΠΊΠ° ΠΈ двСнадцатипСрстной кишки) – Ρ€Π΅Π΄ΠΊΠΎ встрСчаСмыС ΠΈ Π½Π°ΠΈΠΌΠ΅Π½Π΅Π΅ ΠΈΠ·ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Π²Π°Ρ€ΠΈΠ°Π½Ρ‚Ρ‹ заболСвания. ΠŸΡ€ΠΈ ΠΈΠ·ΠΎΠ»ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΌ ΠΏΠΎΡ€Π°ΠΆΠ΅Π½ΠΈΠΈ ΠΆΠ΅Π»ΡƒΠ΄ΠΊΠ° ΠΆΠ°Π»ΠΎΠ±Ρ‹ нСспСцифичны ΠΈ Π²ΠΊΠ»ΡŽΡ‡Π°ΡŽΡ‚ Π±ΠΎΠ»ΠΈ Π² ΡΠΏΠΈΠ³Π°ΡΡ‚Ρ€Π°Π»ΡŒΠ½ΠΎΠΉ области, ΠΆΠ΅Π»ΡƒΠ΄ΠΎΡ‡Π½ΡƒΡŽ диспСпсию, чувство Ρ€Π°Π½Π½Π΅Π³ΠΎ насыщСния, сниТСниС Π°ΠΏΠΏΠ΅Ρ‚ΠΈΡ‚Π°, Ρ‚ΠΎΡˆΠ½ΠΎΡ‚Ρƒ. Π”ΠΈΠ°Π³Π½ΠΎΠ· ΠΈΠ·ΠΎΠ»ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΉ Π‘Πš Π²Π΅Ρ€Ρ…Π½ΠΈΡ… ΠΎΡ‚Π΄Π΅Π»ΠΎΠ² Π–ΠšΠ’ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ установлСн ΠΏΡ€ΠΈ комплСксном обслСдовании, Ρ‡Ρ‚ΠΎ всСгда Ρ‚Ρ€Π΅Π±ΡƒΠ΅Ρ‚ высокого уровня диагностики (клиничСской, эндоскопичСской, морфологичСской). Π’ ΡΡ‚Π°Ρ‚ΡŒΠ΅ Π΄Π°Π½ΠΎ описаниС клиничСского наблюдСния Π‘Πš с ΠΈΠ·ΠΎΠ»ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹ΠΌ ΠΏΠΎΡ€Π°ΠΆΠ΅Π½ΠΈΠ΅ΠΌ ΠΆΠ΅Π»ΡƒΠ΄ΠΊΠ° Ρƒ 62-Π»Π΅Ρ‚Π½Π΅ΠΉ ΠΆΠ΅Π½Ρ‰ΠΈΠ½Ρ‹. Π”ΠΈΠ°Π³Π½ΠΎΠ· Π±Ρ‹Π» ΠΏΠΎΠ΄Ρ‚Π²Π΅Ρ€ΠΆΠ΄Π΅Π½ Π½Π°Π»ΠΈΡ‡ΠΈΠ΅ΠΌ эпитСлиоидноклСточной Π³Ρ€Π°Π½ΡƒΠ»Π΅ΠΌΡ‹ Π² Π°Π½Ρ‚Ρ€Π°Π»ΡŒΠ½ΠΎΠΌ ΠΎΡ‚Π΄Π΅Π»Π΅ ΠΆΠ΅Π»ΡƒΠ΄ΠΊΠ° ΠΏΡ€ΠΈ патогистологичСском исслСдовании. На Ρ„ΠΎΠ½Π΅ лСчСния систСмными Π³Π»ΡŽΠΊΠΎΠΊΠΎΡ€Ρ‚ΠΈΠΊΠΎΡΡ‚Π΅Ρ€ΠΎΠΈΠ΄Π°ΠΌΠΈ достигнуто сниТСниС клиничСской активности заболСвания ΠΈ ΡƒΠ»ΡƒΡ‡ΡˆΠ΅Π½ΠΈΠ΅ гистологичСских характСристик Π±ΠΈΠΎΠΏΡ‚Π°Ρ‚ΠΎΠ² ΠΈΠ· ΠΆΠ΅Π»ΡƒΠ΄ΠΊΠ°, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… ΠΏΡ€ΠΈ эндоскопии. Π’ нашСм наблюдСнии Π±Ρ‹Π»ΠΎ выявлСно спСцифичСскоС макроскопичСскоС ΠΏΠΎΡ€Π°ΠΆΠ΅Π½ΠΈΠ΅ ΠΆΠ΅Π»ΡƒΠ΄ΠΊΠ°, наблюдаСмоС ΠΏΡ€ΠΈ эндоскопии Ρƒ Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ… Π‘Πš Π²Π΅Ρ€Ρ…Π½ΠΈΡ… ΠΎΡ‚Π΄Π΅Π»ΠΎΠ² Π–ΠšΠ’, Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΡƒΡŽΡ‰Π΅Π΅ΡΡ ΡƒΡ‚ΠΎΠ»Ρ‰Π΅Π½Π½Ρ‹ΠΌΠΈ ΠΏΡ€ΠΎΠ΄ΠΎΠ»ΡŒΠ½Ρ‹ΠΌΠΈ складками ΠΈ Π»ΠΈΠ½Π΅ΠΉΠ½Ρ‹ΠΌΠΈ Π±ΠΎΡ€ΠΎΠ·Π΄Π°ΠΌΠΈ, описанноС Ρ€Π°Π½Π΅Π΅ Π² Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Π΅ ΠΊΠ°ΠΊ «сочлСнСния ствола Π±Π°ΠΌΠ±ΡƒΠΊΠΎΠ²ΠΎΠ³ΠΎ Π΄Π΅Ρ€Π΅Π²Π°Β» (Π°Π½Π³Π». bamboo-joint-like appearance).Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅. КомплСксная ΠΎΡ†Π΅Π½ΠΊΠ° клиничСской ΠΊΠ°Ρ€Ρ‚ΠΈΠ½Ρ‹, эндоскопичСских ΠΈ гистопатологичСских особСнностСй ΠΈΠΌΠ΅Π΅Ρ‚ Ρ€Π΅ΡˆΠ°ΡŽΡ‰Π΅Π΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ для своСврСмСнной диагностики ΠΈ лСчСния Π²ΠΎΡΠΏΠ°Π»ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠΉ ΠΊΠΈΡˆΠ΅Ρ‡Π½ΠΈΠΊΠ°

    Electro-deionization of Cr (VI)-Containing solution. Part I: Chromium transport through granulated inorganic ion-exchanger

    No full text
    Kinetics of Cr (VI)β€ΊOH- exchange on both hydrogel and xerogel of hydrated zirconium dioxide was investigated. Self-diffusion coefficient of Cr (VI) species has been determined by analysis of kinetic curves. Transport of Cr (VI) anions through the inorganic ion exchangers under the influence of applied voltage was also researched. In the case of hydrogel, the ions are transported mainly through the solid phase. Diffusion coefficient of chromate anions through this material was estimated as 9.00 Γ— 10-12 m2 s-1. This is in agreement with self-diffusion coefficient of Cr (VI) obtained from kinetic measurements (1.60 Γ— 10-12-9.92 Γ— 10-12 m2 s-1). Owing to the rather high mobility of Cr (VI) through hydrogel of hydrated zirconium dioxide, this material was recommended for electro-deionization processes. On the other hand, the use of polymer anion-exchange membrane must be excluded to prevent poisoning of the inorganic ion exchanger with Cr (III) cations to be formed during chemical interaction of Cr (VI) with organic materials

    Electro-deionization of Cr (VI)-Containing solution. Part II: Chromium transport through Inorganic ion-exchanger and composite ceramic membrane

    No full text
    Cr (VI) transport through a composite ceramic membrane containing an ion-exchange component, namely xerogel of hydrated zirconium dioxide, was investigated. The diffusion coefficient of Cr (VI) species through the membrane, which has been determined under open circuit conditions, is 1.80 Γ— 10-10 m2 s-1. The transport number of Cr (VI) species through the ceramic membrane was found to rise with increasing voltage and reached 0.17 under "over-limiting current" conditions. On the other hand, the transport of chromate ions through hydrogel of hydrated zirconium dioxide becomes more intensive with a decrease in potential drop through the system involving ion-exchanger bed and ceramic membrane due to decrease in the membrane resistance. The diffusion coefficient of Cr (VI) ions in hydrogel of the inorganic ion exchanger was estimated as 4.36 Γ— 10-12 m2 s-1. A possibility of Cr (VI) removal from a weakly acidic diluted solution using an electro-deionization method was shown: the degree of solution purification was found to reach 50%. The transport of species is realized through both the solution and the ion exchanger.Ministry of Education and Science of Ukraine: TUBITAK-CAYDAG-104Y399This research was supported by TUBITAK and Ministry of Education and Science of Ukraine (TUBITAK-CAYDAG-104Y399). -

    The interplay between molecular layering and clustering in adsorption of gases on graphitized thermal carbon black - Spill-over phenomenon and the important role of strong sites

    Get PDF
    We analyse in detail our experimental data, our simulation results and data from the literature, for the adsorption of argon, nitrogen, carbon dioxide, methanol, ammonia and water on graphitized carbon black (GTCB), and show that there are two mechanisms of adsorption at play, and that their interplay governs how different gases adsorb on the surface by either: (1) molecular layering on the basal plane or (2) clustering around very strong sites on the adsorbent whose affinity is much greater than that of the basal plane or the functional groups. Depending on the concentration of the very strong sites or the functional groups, the temperature and the relative strength of the three interactions, (a) fluid-strong sites (fine crevices and functional group) (F-SS), (b) fluid-basal plane (FB) and (c) fluid–fluid (FF), the uptake of adsorbate tends to be dominated by one mechanism. However, there are conditions (temperature and adsorbate) where two mechanisms can both govern the uptake. For simple gases, like argon, nitrogen and carbon dioxide, adsorption proceeds by molecular layering on the basal plane of graphene, but for water which represents an extreme case of a polar molecule, clustering around the strong sites or the functional groups at the edges of the graphene layers is the major mechanism of adsorption and there is little or no adsorption on the basal planes because the F-SS and FF interactions are far stronger than the FB interaction. For adsorptives with lower polarity, exemplified by methanol or ammonia, the adsorption mechanism switches from clustering to layering in the order: ammonia, methanol; and we suggest that the bridging between these two mechanisms is a molecular spill-over phenomenon, which has not been previously proposed in the literature in the context of physical adsorption

    Laser generated microstructures

    No full text
    corecore