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Abstract 

We review the structure and evolution of a number of Riphean-Phanerozoic rifts and extensional basins within the 
territory of the former Soviet Union (FSU). Horst-and-graben formation in strong crustal and subcrustal lithosphere layers 
can explain the multi-trough character of rift systems observed in the Russian platform, the Vilyuy rift, the West Siberian 
rift system, the Pechora-Kolva rift system and the Laptev Sea rift. Many features in the evolution of these rifted basins 
are incompatible with predictions of classical stretching models. Basin subsidence often occurs in the absence of any 
noticeable stretching and over time scales much longer than predicted by models of thermal subsidence. Other observations 
include a time gap between rifting and the onset of post-rift basin subsidence of tens to hundreds Ma and a correlation in 
timing of subsidence phases of rifted basins and platforms with opening and closure events of adjacent ocean basins. These 
observations point to an important role for mechanisms such as eclogite formation within or beneath the lithosphere as well 
as intraplate compression and stress-induced lithospheric deflection. 
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1. In troduct ion  

In the last decade considerable  attention has been 
focused to the model l ing  of  processes associated 
with l i thosphere extension and rifted basin evolution 
(e.g., Ziegler,  1992, 1996). Most  models  at tempt to 

* Corresponding author. 

explain the structure and development  of  continental 
rift zones and rifted continental  margins in terms 
of  l i thosphere stretching, caused by either far-field 
horizontal  forces appl ied to the l i thosphere or deep 
mantle material  uplift  and its subsequent horizon- 
tal flow (Turcotte and Emerman,  1983). The wide 
range of  actual ly observed kinematic  patterns of  
l i thosphere extension has lead to the development  
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of a large number of modifications of the uniform 
stretching or pure shear model (McKenzie, 1978). 
These models invoke non-uniform or discontinu- 
ous depth-dependent stretching (Royden and Keen, 
1980; Beaumont et al., 1982), continuous depth- 
dependent stretching (Rowley and Sahagian, 1986), 
simple shear (Wernicke, 1985; Davis et al., 1986), 
linked tectonics (Gibbs, 1987) as well as combina- 
tions of the simple and pure shear model (Kusznir 
et al., 1987; Kusznir and Park, 1987; Reston, 1990; 
Van Wees et al., 1992; Kusznir and Ziegler, 1992). 
Although successful in explaining some first order 
features in the large-scale evolution of basins, mod- 
els such as the stretching model are facing a number 
of fundamental shortcomings. Well known are the 
discrepancies between observed values of extension 
and thinning of the continental crust (e.g., Moretti 
and Pinet, 1987; Sibuet et al., 1990) and the occur- 
rence of rift-flank uplifts (Moretti and Froidevaux, 
1986; Braun and Beaumont, 1989; Kooi and Cloet- 
ingh, 1992; Van der Beck et al., 1994) which are not 
explained by simple stretching models. A growing 
body of observations strongly supports an impor- 
tant component of non-thermal subsidence during 
the post-rift phase of the evolution of rifted margins 
and intracratonic basins (Stephenson et al., 1989; 
Ziegler, 1990; Artyushkov and Baer, 1990; Leighton 
and Kolata, 1990; Cloetingh and Kooi, 1992b). 

Analysis of different geophysical and geological 
data from a number of rifts and sedimentary basins 
has shown that none of the proposed models can 
successfully explain all features observed (Sibuet 
et al., 1990; Cloetingh et al., 1993, 1994). It is 
likely that some features of the evolution of rift 
zones and sedimentary basins can be described by 
a combination of several known mechanisms, as, 
for example, combination of simple shear in the 
crust, pure shear in the mantle and depth-dependent 
necking. On the other hand, it also appears that major 
aspects of the timing and nature of the subsidence 
record are governed by other unknown processes 
(e.g., Ziegler, 1992, 1996). 

In the present paper we review the structure and 
evolution of a number of Riphean-Phanerozoic rifted 
basins located within the territory of the former So- 
viet Union (FSU). We focus on the style of litho- 
sphere deformation during rifting and the duration 
and amount of post-rift subsidence. This study il- 
lustrates the need to collect more data from wells, 
seismic lines and outcrops to constrain the vari- 
ous models (e.g., Roure et al., 1996; Cloetingh and 
Lobkovsky, 1996). 

2. Structural style and geometrical constraints on 
rifting 

The territory of the FSU contains a large num- 
ber of rifted basins of different ages and tectonic 
settings, each with their own characteristic structure 
and evolution which are examined here on the base 
of stratigraphic data from deep and superdeep wells 
(Fig. 1). Below we consider the structure and ge- 
ometrical features of the space-time distribution of 
the FSU rifts (Fig. 2a-e). We also discuss possi- 
ble kinematic and mechanical models for lithosphere 
extension for a number of rifts of different ages. 

2.1. Structural setting and spacing of subbasins 

Tectonic maps of extensional basin formation in 
different time slices (Fig. 2a-e) demonstrate the 
multi-trough character of some large rifted basins in 
the FSU with subparallet rift depressions separated 
by tectonic uplifts. Examples include the Vilyuy rift 
zone of East Siberia (Figs. 2c and 5), the West 
Siberian rift system (Fig. 2d), the Pechora-Kolva 
rift system (Figs. 2c and 12), the Turan rift system 
(Fig. 2d), as well as the basins of the Trans-Baikal 
region (Fig. 2d), and the Laptev Sea rifts (Fig. 2e). 
The spacing between individual rifts or basins in 
these multi-trough systems is of the order of sev- 
eral tens up to several hundreds of kilometers. The 
Laptev Sea rift system is characterized by a spacing 
of 100 km (Fig. 2e), whereas a spacing of 200 km is 

Fig. 1. (a) Map showing the location of individual sedimentary basins and platforms in the FSU investigated in the paper. The numbers 
refer to the deep wells used for subsidence analyses: / = Orsha well; 2 = Valday well: 3 = Pavlovo Posadskaya well; 4 = Utvinskaya 
well; 5 = Kolvinskaya well; 6 = Tyumenskaya well: 7 -- Pestovskaya well; 8 = Glazovskaya well; 9 = Issinskaya well; I0  = 
Oparinskaya well; 11 = Central Pre-Caspian well; 12 = Vostochno-Poltavskaya well. (b) Map of basement topography of the East 
European platform showing the location of deep wells and cross-sections analyzed in this paper (see Figs. 18 and 19). 
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Fig. 2 (continued). (e) Cenozoic time slice (BR = Baikal rift; LS = Laptev Sea system). 

observed for the Vilyuy rift system (Figs. 2c and 5). 
Similar rift structures, with a spacing of 80 km have 
been reported for the Celtic Sea Western Approaches 
area of northwestern Europe (Ziegler, 1990; Sibuet 
et al., 1990). 

The Late Cenozoic Baikal rift zone (Fig. 2e) is 
a prominent example of a single rift system. This 
rift extends over a distance of 1500 km from the 
East Sayan mountains in the southwest to the Ko- 
dar range in the northeast (Logatchev and Zorin, 
1992; Mats, 1993). The rift consists of a series of 
halfgrabens with a width of 30-80 km and up to 
6-8 km sediments (Sherman, 1992; Hutchinson et 
al., 1992; Burov et al., 1994). The Baikal lake basin 
itself is generally considered as a typical halfgraben 
(Fig. 3a), bounded only on its western side by normal 
fault. A recent and detailed interpretation of seismic 
profiles by Kazmin and Golmshtok (1995) indicates 
that the graben asymmetry is typical for the Late 
Oligocene-Early Pliocene period, followed by nor- 
mal fault development also along the eastern side of 
the lake. The Middle Pliocene period corresponds to 

marked changes in tectonic regime with an intensifi- 
cation of the rates of vertical movements (Logatchev 
and Zorin, 1987) and a modification of the stress 
regime (Delvaux et al., 1996). The changes in tec- 
tonic regime in the middle Pliocene also changed 
the kinematics of graben formation. Since the mid- 
dle Pliocene, the basins evolve to more symmetrical 
grabens, with normal faults on both sides. 

The Devonian Pripyat-Dnieper-Donets (PDD) 
rift is located in the southern part of the East 
European platform (Fig. 2c). A noticeable feature 
pointed out by many authors (e.g., Milanovsky, 
1987; Ljashkevich, 1987; Gavrish, 1989; Garetsky 
and Klushin, 1989; Chekunov et al., 1992; Stephen- 
son et al., 1993) is its unusually large width (100- 
150 km). Garetsky and Klushin (1989) have shown 
that the Western Pripyat basin is bounded by systems 
of deep listric faults (Fig. 3b). The Pripyat graben 
with a length of 200 km terminates abruptly in the 
west. In the east the structure is bordered by the 
transversal Bragin rise. Extension in the graben does 
not exceed several percents (Garetsky and Klushin, 
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1989). Similar to the Baikal rift, halfgrabens of 40-  
60 km width form the principal structural building 
blocks during rifting (Fig. 4). 

The Early Devonian-early Frasnian Pechora- 
Kolva rift system (Belyakov, 1994) consists of sev- 
eral narrow (10-40 km) halfgrabens (see Fig. 12). 
This system extends from the Urals to the Barents 
sea area for 1000 km across the Timan-Pechora 
basin (Fig. 2c). The syn-rift sequence consists of 
shallow water sediments with basaltic intrusions and 
volcanic rocks up to 2-3.5 km thick. 

thick thin intermediate 

Rheological section of pre-rift lithosphere 

ductile layer 

Fig. 4. Variations in rheological stratification for thick, interme- 
diate and thin lithosphere and its response to extension. Modified 
after Nikishin (1987). 

The Devonian Vilyuy rift system is located in the 
eastern part of the Siberian platform (Fig. 2c). The 
rift system (see Gaiduk, 1988 for a description) con- 
sists of several depressions of Frasnian-Tournaisian 
age, separated by longitudinal and transversal rises. 
The observed presence of a 500 km wide dike belt 
indicates that the rift evolved in a regime of roughly 
symmetrical pure shear pre-rift extension. The 70-90 
km wide Suntar horst underwent a syn-rift uplift of 
about 2 km (Figs. 3c and 6). The size of the horst 
suggests a whole-lithosphere control (Fig. 3c). The 
Kempendyai, Ygattin and Sarsan basins are deep 
asymmetrical halfgrabens strongly resembling the 
structure of late Cenozoic rifts such as the Baikal, 
Tanganyika and Malawi rifts (Ebinger, 1989; Burov 
et al., 1994; Van Wees and Cloetingh, 1994; Van der 
Beek, 1995). The arcuate shape of their bounding 
faults is also similar to structures found in the Pripyat 
(Stephenson et al., 1993), the Baikal (Hutchinson 
et al., 1992) and the East African rifts (Rosendahl, 
1987). The Pripyat rift initially formed on thick (over 
100 km) and cold lithosphere with a well pronounced 
upper crustal layer (Stephenson et al., 1993) and a 
thinned lower crustal ductile layer, which could have 
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contributed to the formation of whole-crustal faults 
(Fig. 4). 

2.2. Role of  bulk thermo-mechanical properties of  
the lithosphere 

The geometry of the FSU rifted basins discussed 
above obviously reflects a control by a lithospheric 
rheology characterized by abrupt alternations of 
brittle-ductile layers (Kirby, 1983; Ranalli and Mur- 
phy, 1987) rather than being the expression of long 
wavelength changes in a viscous asthenosphere rhe- 
ology (Moretti and Froidevaux, 1986). Bott (1976) 
applied the wedge subsidence concept of Vening 
Meinesz (1950) to the brittle upper crustal layer. 
This model was modified by Lobkovsky (1989) to 
incorporate the presence of brittle subcrustal litho- 
sphere with compensatory flows occurring within the 
ductile lower crust and lower lithosphere and the 
asthenosphere. A model of extension of a broken 
elastic layer predicts (Bott, 1976) that the width of 
the horst/graben wedge is between rr~/4 and 7rcd2, 
where c~ denotes the flexural parameter of the layer; 
~4 _ ETe3/3g(pa _ pc)(1 - v2). For an effective 
elastic thickness (Te) of the lithosphere of 40 km and 
adopting values of E = 10 GPa for Youngs modu- 
lus, v = 0.25 for Poissons ratio, g = 10 ms -2 for 
the gravitational acceleration and 0.5 g cm 3 for the 
density contrast (Pa - -  Pc) between asthenosphere and 
crust, a width of the horst/graben wedge between 90 
and 175 km is predicted by the model (Fig. 4). An 
effective elastic thickness of 40 km corresponds to 
a thick brittle subcrustal layer in cold continental 
lithosphere (e.g., Cloetingh and Banda, 1992; Burov 
and Diament, 1995). For thinner and warmer litho- 
sphere, the thickness of the brittle subcrustal layer 
is of the order of 10 km (Cloetingh and Banda, 
1992), implying a width of the horst/graben wedge 
between 60 and 125 kin. In extremely thin and hot 
lithosphere, the brittle subcrustal layer is usually 
absent, as demonstrated for parts of the Pannonian 
Basin (Cloetingh et al., 1995; Horvath and Cloet- 
ingh, 1996). In this case horst/graben structures in 
the upper crustal layer are predicted with character- 
istic widths for the subsiding wedge of the order of 
30-60 km (Fig. 4). 

The model of horst/graben formation in a sub- 
crustal brittle layer is consistent with the character- 

istic lateral spacing of rifts and post-rift basins and 
the observed abrupt change in configuration of rift 
structures in most of the examples discussed here for 
the FSU. According to the model, isostatic rise of 
an upward narrowing subcrustal lithosphere wedge 
occurs under influence of applied extensional forces, 
squeezing the viscous material of the lower crustal 
layer away from the rift axis. This in turn would 
cause thinning of the crust (neck formation) as well 
as extension induced and isostatic subsidence of the 
upper brittle crust (Fig. 4). In this mechanism the ma- 
terial flow that leads to the thinning of the lower duc- 
tile crust is not caused by an external tensional force 
operating on the crust but by the squeezing effect 
of the rising mantle wedge block (Lobkovsky, 1989; 
Lobkovsky and Kerchman, 1991). This concept can 
provide an explanation for observed discrepancies 
between the amount of upper crust extension as de- 
termined by measuring the heave on faults mapped 
from reflection-seismic data and estimates of stretch- 
ing factors derived from subsidence analysis and 
the crustal configuration (Artyushkov and Sobolev, 
1982; Ziegler, 1990). The model invokes the inter- 
action of two strong layers in the upper crust and 
brittle subcrustal lithosphere with ductile layers in 
the lower crust and lower viscous lithosphere as well 
as mantle asthenosphere. Furthermore, subsidence of 
the rift neck due to sedimentary loads and uplift of 
rift shoulders in response to erosion can lead to flow 
in the low-viscosity lower crust. This flow, directed 
outwards from the basin center might facilitate up- 
lift of rift shoulders, affecting predictions inferred 
from conventional backstripping models (Burov and 
Cloetingh, 1996). 

The model of horst/graben formation within a 
subcrustal strong lithosphere layer is consistent with 
mantle reflections observed in deep seismic profiles 
(e.g., Matthews and BIRPS group, 1987), sometimes 
interpreted as mantle faults or shear zones, detaching 
upwards into the base of the crust (Klemperer, 1988; 
Reston, 1990; Blundell, 1990). 

Commonly employed elasto-visco-plastic litho- 
sphere rheologies (Vilotte et al., 1987; Chery et al., 
1990) for intermediate P - T  regimes in the litho- 
sphere, fail to predict the localization of deformation 
in subcrustal lithosphere in the form of fault-like 
narrow shear zones, cutting the lithosphere along, for 
example, steep angle surfaces. However, such obser- 
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vations can probably be explained if more complex 
non-associative plastic flow law for mantle rocks are 
adopted (Nikitin and Ryzhak, 1977; Nikolaevskii, 
1983) or when softening effects of the mantle su- 
perplasticity are taken into account (Ranalli and 
Murphy, 1987; Bassi et al., 1993). 

The rifts in the FSU, located on lithosphere with 
different thermo-tectonic ages, show a clear rela- 
tionship between the style of near-surface tectonics 
and the bulk rheological properties of the deeper 
lithosphere (for a general discussion see Cloetingh 
et al., 1995). The present-day Baikal rift and the 
Devonian rifts of the East European and Siberian 
platforms, such as the Vilyuy rift system, are exam- 
ples of rifting occurring in thick cold lithosphere (see 
Figs. 3 and 4). An example of a Mesozoic rift system 
formed on thin hot lithosphere is found southward 
of the Siberian platform. Here a collisional fold belt 
was formed in late Palaeozoic and early Mesozoic 
times, with extensive development of granitoid plu- 
tonism. A subsequent phase of Late Jurassic and 
Early Cretaceous extension in relatively thin and hot 
lithosphere resulted in the formation of the Trans- 
Baikal rift system, consisting of a series of 10-30 
km wide rift basins (Fig. 2d; Milanovsky, 1989). 
Recent work (Ernikov, 1994; Delvaux et al., 1995) 
shows that the late Palaeozoic and Mesozoic tec- 
tonic activity of this area is related to the progressive 
closure of the Mongol-Okhostk ocean. 

The first phase (Triassic-Jurassic) took place in 
an extensional setting, possibly related to the devel- 
opment of metamorphic core complexes, followed 
by the collision of Mongolia-China with Siberia 
in the Early Cretaceous, which caused basin inver- 
sion under a N-S-oriented compression. Recent field 
studies, also point to an important component of 
compression in the evolution of these basins [see 
Cobbold et al. (1993), Burov et al. (1993) and Nik- 
ishin et al. (1993) for a possible analogy in the Tien 
Shan basins]. 

In the following we review the post-rift subsi- 
dence history of a number of extensional basins in 
the FSU, focusing on several fundamental questions. 
(1) Is there any relationship between the style of 
lithosphere fault formation during the rifting stage 
and the nature of post-rift subsidence? (2) Is the 
post-rift history of rift zones formed on cold and hot 
lithosphere similar? (3) Does the stretching model 

describe post-rift basin evolution adequately? (4) 
What is the role of other tectonic mechanisms for 
post-rift basin subsidence and basin deformation? 

In many cases, rift zones formed on thick litho- 
sphere undergo major post-rift subsidence. Rift 
zones formed on thin lithosphere are frequently 
subject to post-rift compression and general uplift 
as observed for large parts of the Trans-Baikalian 
rift system. This difference can sometimes be ex- 
plained by the reduced strength of thinned litho- 
sphere, leading to a more pronounced response to 
regional compression in terms of thrusting and uplift 
(e.g., Stephenson et al., 1990; Nikishin et al., 1993; 
Burov et al., 1993). Rifts on thick old lithosphere 
are in many cases inverted several tens of millions 
of years after termination of rifting [e.g., Ougarta 
trough of northern Africa (Ziegler, 1989; Ziegler et 
al., 1995)]. 

3. Post-rift subsidence history of  some 
extensional basins in the FSU 

Most of the above mentioned rift zones located in 
the FSU territory are associated with major sedimen- 
tary basins. Several superdeep wells (Fig. 1) have 
been drilled in these basins during the last 20 years. 
New data obtained from these wells have allowed 
in some cases to reinterpret existing data leading to 
better constraints on models for basin structure and 
evolution. 

The results of quantitative subsidence analysis of 
data from a number of superdeep wells discussed be- 
low demonstrate that several main phases of post-rift 
subsidence can be distinguished during late Pre- 
cambrian, early Palaeozoic, late Palaeozoic, Meso- 
zoic and Cenozoic times. These periods followed 
long phases of continental rifting during Riphean- 
Vendian, Devonian, Triassic and Palaeogene times. 

The backstripping procedure (e.g., Bond and 
Kominz, 1984) removes the effect of sediment load- 
ing from the basement subsidence, thus allowing 
quantification of tectonic basement subsidence. The 
amount of decompaction is calculated using empiri- 
cal porosity/depth relations for the specific lithology 
of each layer (Bond and Kominz, 1984). Local iso- 
static behaviour of the lithosphere is assumed. This 
affects the inferred amount of the tectonic subsidence 
but not the subsidence pattern. 



260 L.L Lobkovsk3' et al. / Tectonophysics 266 (1996) 251-285 

A review of the post-rift subsidence history of a 
number of extensional basins in the FSU where sci- 
entific drilling was performed is given below with a 
special emphasis on new data for their structure and 
evolution. The basins discussed can be divided into 
two major groups: the first group are the intracra- 
tonic rift basins, belonging to the East European 
and East Siberian ancient platforms; the other group 
consists of basins located on young platforms (West 
Siberia) or within marginal areas of ancient plat- 
forms (Timan-Pechora and Pre-Caspian basins). 

4. Intracratonic basins 

4.1. Late Precambrian basins of the East European 
platform 

During late Precambrian times (1600-570 Ma) 
the East European platform underwent four main 
rifting episodes (Fig. 2a, b): early Riphean (1600- 
1350 Ma), mid-Riphean (1350-1000 Ma), late Riph- 
ean (1000-680 Ma) and early Vendian (680-630 
Ma) (Milanovsky, 1987). The post-rift phase of the 
basins began after the late Vendian (approximately 
630 Ma) (Fig. 2b). It appears that the rifting phase 
is not always immediately followed by a phase of 
post-rift subsidence (Nikishin et al., 1996). Some of 
the Riphean rifts were inverted, therefore leading to 
the absence of a post-rift subsidence (Milanovsky, 
1992). Only alter the fourth (early Vendian) rifting 
stage, a phase of post-rift subsidence started. This 
occurred simultaneously with the opening of the la- 
petus Ocean and the Central Asian Ocean, located 
to the west and to the east of the platform, respec- 
tively. The post-rift subsidence was irregular in space 
and time. Major subsidence occurred in rift zones 
which died during mid-Riphean times (1000 Ma), 
whereas subsidence was minor fbr rifts terminated 
during the late Riphean-early Vendian (about 680- 
630 Ma). The post-rift subsidence ceased during the 
Late Silurian-Early Devonian simultaneously with 
the Caledonian orogeny in Western Europe. The time 
history of the Riphean-Vendian sedimentary basins 
of the East European platform demonstrates that a 
simple scenario of sedimentary basin formation in 
terms of stretching followed by post-tift thermal 
subsidence (McKenzie, 1978) requires substantial 
modification. 

4.2. Late Precambrian basins of the East Siberian 
platform 

At least three rifting phases occurred on the East 
Siberian platform during Riphean times (Fig. 2a, 
b): early Riphean (1600-1350 Ma); mid-Riphean 
(1350-1000 Ma); and late Riphean (1000-800 Ma) 
(Milanovsky, 1987; Shpunt, 1988). The first two 
epochs coincide with phases of ocean basin open- 
ing in the vicinity of the Yenisyey Mountain Ridge 
and Trans-Baikalian area; the third tiffing phase oc- 
curred simultaneously with an early stage of ocean 
basin opening in the Sayan area. These three rifting 
stages are probably followed by a phase of post-tift 
subsidence. However, the Riphean stratigraphy of 
the East Siberian platform is not worked out well 
enough to reconstruct the evolution of the rifted 
basins. Almost the whole East Siberian platform 
was covered by marine sediments partly overlain 
by basalts during Vendian-Sturtian times (800-570 
Ma) (Milanovsky, 1987). This phase of platform 
subsidence corresponds to a phase of ocean basin 
formation in the Altai-Sayan region (Zonenshain et 
al., 1990). The platform subsidence terminated in the 
Late Silurian-Early Devonian synchronous with the 
Late Caledonian orogeny in the Altai-Sayan region 
(Milanovsky, 1987). 

4.3. Devonian-late Palaeozoic basins of the East 
European platform 

Continental rifting became very prominent on 
the East European platform during the Devonian 
(Fig. 2c). The Pripyat-Dnieper-Donets rifts as well 
as a rift belt parallel to the Urals-Nova Zemlya 
system were formed in this time slice. A num- 
ber of stages can be separated in the evolution of 
the Pripyat-Dnieper-Donets rift (Bronguleev, 1981 ; 
Milanovsky, 1987; Gavrish, 1989; Garetsky, 1990; 
Stephenson et al., 1993). During mid-Devonian times 
a shallow continental Pripyat-Dnieper-Donets rift 
was formed accumulating continental and shallow- 
water sediments up to 100-200 m thick, with pos- 
sible minor volcanic activity. The Pripyat-Dnieper- 
Donets rift could have been formed by rift propaga- 
tion from a spreading ridge of the North Caucasian 
ocean (Palaeotethys ocean) located to the south of 
the East European platform during Palaeozoic times. 
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Fig. 5. (a) Cross-section along the Pripyat-Dnieper-Donets rift with the location of the Vostochno-Poltavskaya well. 1 = post-rift 
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The  Late Devon ian  (Frasn ian  and  F a m e n n i a n  stages) 
was the t ime of  the pr incipal  phase of  faul t ing and 
rift ing, wi th  depos i t ion  of  up to 3 - 4  k m  sed iments  in  

the Pr ipyat  graben,  and  up to 3 - 4  k m  and  more  than 
6 km in Dniepe r  and Donets  grabens,  respect ively 
(Fig. 5a, b). Rif t ing was associated with several 
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phases of plateau basalt volcanism and doming. The 
Carboniferous-Early Permian post-rift subsidence 
was accompanied by the accumulation of shallow- 
water and continental deposits, with less than 1 km 
of post-rift subsidence in the Pripyat graben, about 4 
km in the Dnieper graben and approximately 12-15 
km in the Donets basin (Fig. 5a, b). A major ampli- 
fication of thermal subsidence by sediment loading 
can be observed in the Donbass region. As pointed 
out by Nikishin et al. (1996), the late Visean-Early 
Permian acceleration of post-rift subsidence is prob- 
ably controlled by compressional stresses induced 
by collisional tectonics in the Caucasus-Dobrogea 
orogen. Mid-Permian inversion in the Donets basin 
did, however, not affect the Pripyat and Dnieper 
basins which continued to subside. In Late Permian- 
Cenozoic times a slow subsidence of the Pripyat and 
Dnieper basins took place of up to 1.6-1.8 kin. 

Rifting also affected the eastern part of the East 
European platform during mid-Late Devonian times 
(Milanovsky, 1987). It started in the Givetian (Vy- 
atka and Don-Medvedits palaeorifts) and continued 
in the Late Devonian by the formation of new sys- 
tems of narrow grabens (Fig. 2c). In contrast to the 
Dnieper-Donets rift, these rifts do not show evidence 
of regional doming (Milanovsky, 1987). In the mid- 

dle Frasnian the Volga-Ural region underwent rapid 
subsidence of a few hundreds meters with deposition 
of bituminous shales. In Bashkirian-Permian times, 
the Volga-Ural area underwent a phase of fore- 
land subsidence and sedimentary infilling. For the 
area of the Volga-Ural basin associated with rapid 
subsidence in excess of sedimentation the crustal 
thickness is about 35 km, whereas a crustal thickness 
of 40 km has been reported for the surrounding areas 
of the platform (Bronguleev, 1978, 1981). 

4.4. Devonian-late Palaeozoic~Mesozoic basins o f  

the East Siberian platform 

The Vilyuy basin is the largest middle-late 
Palaeozoic sedimentary basin of the Siberian plat- 
form (Fig. 2c). Devonian rifts underlay the Vilyuy 
basin (Fig. 6). The presence of three large subpar- 
allel rifts is a characteristic feature of the 500 km 
wide rift system. In the eastern part, the rift sys- 
tem is linked with the Mesozoic Verkhoyansk fold 
belt (Milanovsky, 1987). The Vilyuy rift belt formed 
probably during the Devonian the continuation of 
the ocean spreading zone within the Verkhoyansk- 
Kolyma region. An extensive geological and geo- 
physical data set, including well data, seismic pro- 

NW SE 

Yguattine depression Suntar rise 

i 
Kempendayai depression 

Sarsen depression 

Fig. 6. Cross-section of the Western part of the Vilyuy basin with location of boreholes (Gaiduk, 1988). l = Jurassic-Lower Cretaceous 
post-rift cover: 2 = rift complex; 3 = early Frasnian basalts; 4 = pre-rift sediments (lower Palaeozoic); 5 = Precambrian basement. 
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files and outcrop data (Gaiduk, 1988), suggests that 
the following stages can be distinguished in the de- 
velopment of the rift zone: (1) the mid-Devonian 
(Eifelian and Givetian) formation of a wide sedi- 
mentary basin with continental sediments of sev- 
eral hundreds meters thickness; (2) a Late Devonian 
(Frasnian and Famennian) main phase of rifting, 
accompanied by extrusion of plateau basalts, flank 
uplift and syn-rift sediment accumulation up to 2-7 
km; (3) a Carboniferous-mid-Jurassic phase, char- 
acterized by a post-rift subsidence of less than 1 
km and sedimentation over a wide area, with an 
eastward increasing subsidence towards the passive 
margin; (4) a Late Jurassic-Cretaceous phase, char- 
acterized by the formation of a foreland basin in front 
of the Verkhoyansk orogen in the eastern part of the 
Vilyuy basin, with the accumulation of sedimentary 
thicknesses up to 4-5 km. 

5. Basins on young platforms and on the 
periphery of the cratons 

5.1. The Pre-Caspian basin 

The Pre-Caspian basin forms an elliptic depres- 
sion with a diameter of about 600-900 km and a 
sedimentary thickness of up to 20-22 km (Fig. lb). 
During the 1960-1970's two superdeep wells (Aral- 
sorskaya and Biikjalskaya) were drilled and in the 
80's another three superdeep wells (Derculskaya, 
Utvinskaya and Koskulskaya) with a projected depth 
of 7 km were started in the Pre-Caspian basin for the 
direct investigation of deep horizons of the sub-salt 
sedimentary complex and basement (Figs. lb and 
7). Unfortunately, the Utvinskaya and Derculskaya 
drill holes were terminated at a depth of approxi- 
mately 4.5 km (Khakheav, 1993). As a result, the 
structure of sub-salt deposits of inner regions of the 
basin can only be assessed by seismic data, leading 
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Fig.  7. Geo log ica l  zona t ion  o f  P re -Casp ian  sub-sal t  deposits .  Tectonic  structure:  1 = P u g a c h o v  arch;  2 = S o l - I l e k  uprise;  3 = Uil uprise;  

4 = Sarpin  t r ough  5 = K h o b d i n  t rough;  6 = Ara l so r  arch;  7 = M e z d u r e c h e n s k  step; 8 = East  P re -Casp ian  arch;  9 = West  P re -Casp ian  
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to considerable uncertainty on the age and com- 
position of the subsalt strata of the Central parts 
of the Pre-Caspian depression. Seismostratigraphic 
analysis (Volozh, 1991) of a network of SDP re- 
gional profiles has lead to the construction of a 
general chronostratigraphic chart of the sub-salt Pre- 
Caspian complex (Fig. 8). Four seismogeological 
layers can be recognized in the sub-salt section: 
Riphean, lower Palaeozoic, Devonian-Lower Car- 
boniferous and Middle Carboniferous-Lower Per- 
mian. These divisions of the section are separated by 
regional stratigraphical gaps of various duration, ac- 
companied by the development of erosional uncon- 
formities in marginal areas. Unconformity surfaces 
correspond to reflecting reference horizons which 
can be traced through the entire depression (Fig. 8). 

Fig. 9 shows a seismogeological section through 
the Pre-Caspian basin illustrating the relationship of 
reflection seismically defined sedimentary sequences 
used for the reconstruction of its late Palaeozoic 
history (Fig. 10). The following main stages can 
be distinguished: (1) a phase of late Precambrian 
rifting; (2) a phase of early Palaeozoic (Cambrian- 
Ordovician) sediment deposition in a relatively deep 
water environment, followed by shallow water condi- 
tions during Late Ordovician-Early Devonian times; 
(3) the formation of a deep-water through with water 
depths of more than 2.5 km in the inner part of 
the Pre-Caspian basin accompanied by rapid tectonic 
subsidence during Middle Devonian-Early Carbonif- 
erous times; (4) Middle Carboniferous-Early Per- 
mian infilling of the deep-water through mainly 
by clastic sediments; (5) Kungurian deposition of 
salt; (6) Late Permian-Cenozoic accumulation of 
shallow water sediments and continental deposits. 
Subsidence analysis of the Utvinskaya well in the 
Northern part of the Pre-Caspian basin shows a gen- 
eral subsiding trend from the Middle Triassic onward 
(Fig. 1 la). Subsidence analysis of the Central Pre- 
Caspian area carried out on the base of well data and 
seismic profiles shows a general subsidence from 
Ordovician onward (Fig. 1 lb). 

A number of different interpretations exist of 
the mechanisms of the origin and evolution of the 
Pre-Caspian basin (Zonenshain et al., 1990; Volozh, 
1991; Artyushkov, 1993). The following observa- 
tions provide important constraints on the pro- 
posed models. As shown in Fig. l lb, the basin 

underwent four main phases of prolonged rapid 
subsidence. These occur during Riphean-Vendian, 
Middle Cambrian-Ordovician, Middle Devonian- 
Early Carboniferous and Middle Carboniferous- 
Triassic times. The timing of the Middle Cambrian- 
Ordovician subsidence phase correlates with the ini- 
tial stage of the opening of the Urals palaeo-ocean, 
whereas the subsequent Middle Devonian-Early Car- 
boniferous subsidence phase occurs at the time of 
back-arc basin formation in the Ural palaeo-ocean. 
The Middle Carboniferous-Triassic phase coincides 
with the occurrence of collisional tectonics in the 
Ural orogenic belt and Karpinsky Swell (Zonenshain 
et al., 1990; Nikishin et al., 1996). The above sug- 
gests that the Pre-Caspian basin was affected by 
tensional activity in Riphean, early Palaeozoic and 
Middle Devonian-Early Carboniferous times. Zo- 
nenshain et al. (1990) proposed that the Devonian 
rift phase progressed into the opening of a small, 
up to 100 km wide, ocean basin. An alternative in- 
terpretation attributes the Palaeozoic subsidence to 
a basalt-eclogite transformation in the lower crust 
(Artyushkov, 1993), or at the bottom of the thinned 
lithosphere during rifting (Lobkovsky et al., 1993). 
The Middle Carboniferous-Triassic phase of rapid 
subsidence could be the result of compressional tec- 
tonics, loading of the Ural and Karpinsky swell 
orogens and a major supply of clastic sediments 
(Nikishin et al., 1996). The associated increases 
in the level of the regional stress field could also 
have promoted to the effectivity of intra-lithospheric 
phase changes (Cloetingh and Kooi, 1992a). The 
rapid subsidence event occurring at the Permian- 
Triassic boundary is probably related to a regional 
tensional event. 

5.2. The T iman-Pechora  basin 

Fig. 12 shows the main structural units of the 
Timan-Pechora basin. Within the Pechora basin the 
Palaeozoic-Mesozoic sedimentary cover has a thick- 
ness of 8-10 km (Bronguleev, 1978; Parasina et 
al., 1989; Daragan-Sukhova, 1991). The basement is 
Baikalian in age. The Kolvinskaya drill hole with a 
depth of 7 km is the deepest well in the Timan- 
Pechora province (Figs. 1 and 12). Terrigenous- 
carbonate Mesozoic and middle-upper Palaeozoic 
sediments were penetrated by the well (Khakheav, 
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Fig. 10. Palaeoreconstruction of the Palaeozoic history of Pre-Caspian basin on line Zhambay-Uralsk (after Volozh, 1991). Legend 
corresponds to Fig. 9. 

1993). The well reached Silurian sediments, whereas 
Ordovician deposits are expected to underlie the Sil- 
urian strata (Ehlakov et al., 1991a; Belyakov, 1994). 

Based on a seismic section crossing the Pechora-  
Kolva basin (Fig. 13) and well data, Belyakov (1994) 
has compiled the general chronostratigraphic frame- 
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Fig. 11. (a) Subsidence history for the Utvinskaya well (no. 4 in Fig. 1 ), located in the north flank of the Pre-Caspian basin. Stratigraphy 
data of Perevozchikov et al., 1991). The well is drilled 3650 m deep and reached the Middle Triassic. Main subsidence phases: 
Mesozoic-Cenozoic post-rift subsidence; a possible tension phase took place in Triassic times. (b) Subsidence history for the Central part 
of Pre-Caspian basin (synthetic well, no. 11 in Fig. 1). The timing and nature of the main phases of subsidence: Ordovician - -  possible 
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= rate of tectonic subsidence; 4 = depth of sedimentation surface. 

w o r k  o f  t h e  T i m a n - P e c h o r a  b a s i n  (F ig .  14). T h i s  has  

a l l o w e d  t h e  r e c o n s t r u c t i o n  o f  t h e  e v o l u t i o n  o f  t he  

b a s i n  f r o m  E a r l y  O r d o v i c i a n  to  la te  A r t i n s k i a n  t i m e s  

(F ig .  15) ( B e l y a k o v  e t  al. ,  1994).  

Q u a n t i t a t i v e  s u b s i d e n c e  a n a l y s i s  o f  t he  K o l v i n -  

s k a y a  w e l l  (F ig .  16) d e m o n s t r a t e s  t h e  o c c u r r e n c e  o f  

m a j o r  p h a s e s  o f  r a p i d  s u b s i d e n c e  in E a r l y  D e v o n i a n  

( L o c k h o v i a n ) ,  M i d d l e  D e v o n i a n  a n d  L a t e  D e v o n i a n  
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Fig. 12. Major structural units of the Timan-Pechora basin. 1 
= boundaries between structural units; 2 = boundary of the 
Pechora-Kolva aulacogen; 3 = profile line of seismic section 
(see Fig. 13); 4 = profile line for geological reconstruction 
(see Fig. 15); 5 = areas of Devonian graben-rifts; 6 = wells, 
a = drilled, b = projected, by the Enterprise NEDRA (1 = 
Kolvinskaya N1, H = Timan-Pechorskaya). Structural units: 1 = 
Izhma-Pechora depression; 2 = Pechora-Kozhva megaswell; 3 
= Malaya Zemlya monocline; 4 = Shapkina-Yuryakhinsk swell; 
5 = Laya dome (swell); 6 = Kolva swell; 7 = Khoreiversk 
depression; 8 = Ural foredeep depression; 8a = Varandej- 
Adzvinsk structural zone; 9 = ridges (a = Chernyshev, b = 
Chernov). 

t imes related to rifting. These rift phases were sep- 
arated by local inversions. The phase of  rapid post- 
rift subsidence during middle  Frasn ian-Famennian  
(Figs. 15 and 16) seems to be caused part ial ly by a 
non-thermal  mechanism possibly  related with eclog- 
ite lens formation on the l i thosphere-as thenosphere  
boundary (Lobkovsky et al., 1993). 

As a result of  Uralian compression,  the Devonian 
grabens within the T iman-Pechora  basin were partly 
inverted during the Carboniferous-Tr iass ic  per iod 
(Fig. 16) and in Late Tr iass ic -Ear ly  Jurassic t imes 

some erosion occurred. This compressional  defor- 
mation also init iated the formation of  Lower  Per- 
mian structural units and control led the distribution 
and evolution of  the Permian reefs and bioherms 
(Belyakov, 1994). 

5.3. The West Siberian basin 

During the Mesozoic ,  three main rifting phases 
are prominent  in the Ura l s -Mongo l i an  fold belt  
(Fig. 2d), mainly active during the Triassic, E a r l y -  
Middle  Jurassic, and Late Jurass ic -Ear ly  Cretaceous 
(Milanovsky, 1992). Through time, rifting activ- 
ity shifted eastward. Post-rift  subsidence leading to 
the formation of  wide basins occurred in the West 
Siberian, Turan and Z e y a - B u r e y a  basins (Fig. 2d), 
but evidence for post-rift  subsidence is lacking in 
several other sub-basins.  A number  of  these basins 
even underwent inversion due to tectonic compres-  
sion (Fig. 2d). 

The West Siberian basin (Fig. 2d) is the largest 
sedimentary basin in the terri tory of  the FSU,  with a 
sedimentary cover of  up to 13 km thick. The base- 
ment of  the West Siberian basin consists of  Palaeo- 
zoic folded strata and Precambrian blocks,  with dif- 
ferent interpretations proposed for their boundaries 
(Surkov, 1986; Bogolepov et al., 1988; Milanovsky, 
1989; Khain et al., 1991; Peterson and Clarke, 1991). 
A number  of  Vendian-Palaeozoic  sedimentary basins 
are located under the Mesozoic  cover (Surkov, 1986; 
Siemov, 1987; Milanovsky, 1987). The history of  the 
West  Siberian basin i tself  started with a phase of  
Late Permian rifting, fol lowing the complet ion of  the 
last phase of  the Uralian Carboni ferous-Ear ly  Per- 
mian orogeny in the Ura l s -Wes t  Siberia region. The 
entire basin subsided in a back-arc posit ion on top 
of  an orogenical ly  destabi l ized l i thosphere (Ziegler, 
1989). In West  Siberia the Permo-Triassic  rifting was 
widely  manifested (Surkov, 1986), though its scale is 
still disputed as a result of  the lack of  deep bore hole 
evidence. 

The N-S- t rend ing  Urengo i -Kol togor  rift can be 
traced in the axial part of  the basin (Fig. 2d). The 
graben is 50 km wide. According to seismic data 
a sedimentary cover thickness of  8 km is over- 
lying crystal l ine crust with a thickness of  29 km 
(Surkov et al., 1993). The Tyumenskaya superdeep 
well is located in the northern part of  the Urengo i -  
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Koltogor graben (Figs. 1, 2d and 17a). In 1994 
the well reached a depth of 7.5 km, sampling 
an almost complete Mesozoic section (Fig. 17b), 
and entered volcanic-sedimentary sequences of lat- 
est Permian age at a depth of 7.3 km (Khakheav, 
1993). The most lower sequence is represented by 
a Late Permian-Early Triassic volcanic-sedimentary 
rift complex. The Middle-Late Triassic series are 
represented in the well by clastic sediments and 
conglomerates (Ehlakov et al., 199 l b). 

From Jurassic times onward, the entire area of 
West Siberia began to subside regionally (Fig. 2d). 
Shallow-water and continental clastics were promi- 
nent during the post-Triassic, with exception of strata 
deposited at the transition of Jurassic to Cretaceous. 
During uppermost Jurassic time the inner part of the 
West Siberian Basin underwent an acceleration of 
subsidence with deposition of approximately 40 m 
of black bituminous sediment under starved basin 
conditions (the Bazhenov formation). During the 
Neocomian terrigenous clinoforms prograded into 
the basin and by the end of the Neocomian the 
basin returned to shallow water conditions again 
(Milanovsky, 1989). 

Subsidence analysis of the Tyumenskaya well 
(Fig. 17c) shows a Late Permian-Early Triassic rapid 
subsidence phase, with the occurrence of basalts and 
deposition of terrigenous shallow water sediments. 
The Middle-Late Triassic sequence possibly reflects 
a phase of thermal subsidence. The Triassic-Jurassic 
boundary (208 Ma) exhibits a mild acceleration in 
subsidence, which is possibly related to an exten- 
sional event. From the Jurassic to Neogene sediment 

loading keeps up with continuous subsidence, only 
disturbed by relatively small-scale events. Since the 
Late Oligocene-Miocene the basin probably under- 
went syn-compressional uplift. 

We have used a simple stretching model (McKen- 
zie, 1978) to estimate the amount of extension re- 
quired to explain this subsidence pattern, assum- 
ing a phase of Early Triassic extension. Differential 
crustal and subcrustal extension is required to model 
the large amount of post-rift subsidence. Adopting 
a pre-extensional crustal thickness of 40 km for 
the orogenically destabilized crust, we obtained esti- 
mates for the amount of crustal extension/3 - 1.15, 
subcrustal extension ~ = 1.3 and a duration of rift- 
ing of 10 Ma. The large size of the West Siberian 
basin probably contributed substantially to the long 
duration of the post-rift subsidence since thermal 
relaxation of the extended lithosphere cannot take 
place in this case through lateral heat transport. 

6. Relationship between regional subsidence of 
the Russian platform and orogenic activity in 
adjacent belts 

Fig. 18 shows cross-sections of Russian plat- 
form basins along three regional profiles (see 
Fig. lb). Subsidence analysis of the platform car- 
tied out for seven wells (Fig. 19), demonstrates that 
the deposition of the cover of the Russian plat- 
form took place during three distinct phases in 
late Vendian-Silurian, mid-Devonian-Triassic and 
Jurassic-Palaeogene times (see also Aleinikov et al., 
1980; Milanovsky, 1987). These phases are separated 
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areas 1-8 in Fig. 12. 
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Fig. 15. Palaeoreconstruction of the Timan-Pechora basin geological evolution from Early Ordovician to late Artinskian times on the 
profile SW-NE (see Fig. 12) (after Belyakov et al., 1994). 

by the Caledonian, Hercynian and Alpine deforma- 
tion phases respectively (Fig. 20). Well data for the 
Moscow basin reflect these cycles in the subsidence 
record of the Pavlovo-Posadskaya well, Valday well 
and the Orsha well (Fig. 19a-c). During these three 
cycles of platform cover development the amplitude 
of regional tectonic subsidence was up to 0.5-1 kin. 

Regional subsidence occurred mainly in the plat- 
form areas located near the adjacent orogenic belts 
which were active at the same time (known in the 
Russian literature as the Karpinsky rule, see Mi- 
lanovsky, 1987). During the Iapetus-Tornquist oro- 
genic phase the main subsidence was concentrated 
on the western parts of the platform (late Vendian- 
Silurian). At the time of the Ural orogenic activity 
(Middle Devonian-Permian), subsidence was local- 

ized mainly in the eastern part of the platform, 
whereas during the Tethys orogenic activity (mid- 
Jurassic-Cenozoic) the main subsidence was con- 
centrated in the southern part of the platform. The 
formation of the Tethys oceanic basin occurred in 
pre-Jurassic times (Zonenshain et al., 1990; Ziegler, 
1990), followed by the development of a northward 
dipping subduction system in Jurassic-Eocene times. 
During Middle Jurassic-Eocene times, the southern 
part of the Russian platform underwent a significant 
subsidence. 

Opening of the Ural palaeo-ocean occurred 
mainly in the Early Ordovician (Zonenshain et al., 
1990). A stable orogenic system in association with 
a probably westward dipping subduction zone was 
created in Middle Devonian time. Simultaneously, 
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o f  invers ion events.  

in Middle Devonian-Permian times the eastern part 
of the Russian platform underwent regional subsi- 
dence, following the Middle-Late Devonian rifting 
events. These findings support the existence of a 
causal relationship between the evolution of the 
subduction related orogenic belts and the platform 
subsidence histories. The documented long-term re- 
gional subsidence phases of the Russian platform 
were interrupted by numerous short-term uplift or 
rapid subsidence events (see Fig. 19). The timing 
of these short-term events is correlatable over wide 
areas. These features support an interpretation of the 
short-term anomalous uplift and subsidence events in 
terms of changes in intraplate stress fields (Cloetingh 
et al., 1985, 1989; Cloetingh and Kooi, 1992a). 

7. Possible causes of non-thermal subsidence 
during the post-rift phase 

Analysis of observed basin structures and subsi- 
dence characteristics of a number of rifted basins 
in the FSU show that a simple stretching model 
alone does not explain all features of the basin 
record. Post-rift subsidence appears to occur both 
faster and slower than predicted by the stretching 
model. The stretching model cannot explain ob- 

served stages of short-term rapid basin subsidence 
and does not account for long breaks between the 
rifting stage and the onset of post-rift subsidence 
as observed for the Russian platform. A particularly 
important observation is the extremely long duration 
of the post-rift subsidence phase in a number of these 
basins, compatible with similar findings for intracra- 
tonic basins in northern America (e.g., Leighton and 
Kolata, 1990). More stratigraphic data from wells, 
seismic profiles and outcrops are needed to constrain 
more complex basin formation models. 

The analysis of rifted basins in the FSU demon- 
strates important differences in the transition of rift- 
ing stages to subsequent phases of post-rift evolu- 
tion. The numerous Mesozoic rifts of the Urals- 
Mongolian belt form examples where no post-rift 
sedimentary basin has been formed (Fig. 2d). In 
the Pripyat-Dnieper-Donets basin, the Vilyuy basin 
and the Pechora basin a post-rift sedimentary basin 
begins to form just after completion of the rifting 
phase. In other cases, a post-rift sedimentary basin 
was formed tens or even hundreds million years 
after rifting completion. For example, four main rift- 
ing phases occurred in the East European platform 
during Riphean-early Vendian times followed in a 
number of aulacogens by post-rift subsidence begin- 
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co lumn of Tyumenskaya  well:  1 = argilli tes; 2 = aleuroli tes;  3 = thinly layered argillites, aleuroli tes and sandstones 4 = coaly argilli tes; 
5 = sandstones; 6 = conglomerates;  7 = gravelites;  8 = bi tuminous clays with sil icon and pyrite concretions;  9 = basal t  and tufts. (c) 
Subsidence history for the Tyumenskaya  well  (No. 6 in Fig. 1). T iming  and nature of subsidence history: Early Triassic - -  main rift 
phase; Midd le -La te  Triassic - -  post-rift  subsidence with a possible inversion event at the end of  Triassic t imes; Jurassic~Zenozoic  - -  
post-rift  subsidence with a rapid subsidence event at the Jurass ic-Cretaceous boundary and possible syn-compression uplift in the late 
Cenozoic.  
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Fig. 19. Subsidence history curves for seven wells in the Russian platform (see Fig. 1 for location of the wells): a = Valday well; b 
= Orsha well; c = Pavlovo-Posadskaya well; d = Pestovskaya well; e = Glazovskaya well; f = Issinskaya well; g = Oparinskaya 
well. Timing and main characteristics of Russian platform subsidence history: rift events in Riphean and early Vendian (Orsha 
well, Valday well, Pavlovo-Posadskaya well); molasse foreland subsidence in the late Vendian (Pestovskaya, Glazovskaya, Pavlovo- 
Posadskaya, Valday, Orsha wells); Early Cambrian inversion event (Pestovskaya, Glazovskaya, Orsha wells); early Palaeozoic platform 
subsidence (Pestovskaya, Glazovskaya, Valday wells); Late Silurian-Early Devonian inversion tectonics and uplifting (Pestovskaya, 
Glazovskaya, Pavlovo-Posadskaya(?), Valday, Orsha(?) wells); Middle-Late Devonian tension events (Pestovskaya, Oparinskaya, 
Issinskaya, Glazovskaya, Pavlovo-Posadskaya, Valday, Orsha wells); post-rift subsidence interrupted by a compressional event in the 
Ural belt (Carboniferous); Permian - -  foreland subsidence and inversion events in connection with Uralian orogeny (Pestovskaya, 
Oparinskaya, Issinskaya, Glazovskaya wells); Permian/Triassic boundary - -  weak tension event (Glazovskaya well); Triassic-Early 
Jurassic - -  uplifting of the platform(Pestovskaya, Oparinskaya, Issinskaya, Glazovskaya, Pavlovo-Posadskaya wells); Middle Jurassic 
Cretaceous - -  platform subsidence (Pestovskaya, Oparinskaya, Issinskaya, Glazovskaya, Pavlovo-Posadskaya wells); post-Cretaceous - -  
domination of uplift (possibly recorded in all wells). 
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Iapetus Ocean, for example, began to open in the 
late Vendian; at the same time post-rift basins of 
the East European platform began to subside. In the 
Late Silurian-Early Devonian, simultaneous with the 
Caledonian orogeny, this subsidence stopped or was 
interrupted. 

In the late Riphean (about 800 Ma), simultaneous 
with the opening of an oceanic basin at its southern 
and western margin, almost the whole East Siberian 
platform underwent rapid subsidence and deposi- 
tion of marine sediments. In the Late Silurian-Early 
Devonian subsidence was terminated simultaneous 
with the Caledonian orogeny south and west of the 
platform. 

In some cases pre-rift and syn-rift volcanism 
could have contributed to post-rift subsidence. Rifts 
characterized by large-scale volcanism ( 'wet '  rifts) 
are in many cases not followed by deep post-rift sub- 
sidence and the development of wide sedimentary 
basins (e.g., the Palaeozoic Oslo rift). Areas of flood 
basalt volcanism without rifting or considerable ex- 
tension (e.g., Stel et al., 1993) most times do not 
undergo noticeable subsidence after the completion 
of volcanism, but can stay in an uplifted position as 
observed in the flood basalt provinces in the Siberian 
platform. 

It appears, therefore, that in addition to stretching, 
other mechanisms such as eclogite formation in the 
lower crust (Fowler and Nisbet, 1990) or beneath 

extended lithosphere (Lobkovsky et al., 1993), and 
regional compression of the lithosphere during the 
post-rift phase (Cloetingh, 1988) play a potentially 
significant role. 

7.1. Eclogite lens formation in the upper mantle 
beneath extended lithosphere and related subsidence 

The role magmatism plays in the formation of 
sedimentary basins is not yet sufficiently understood 
(e.g., Quinlan et al., 1993; Wilson, 1993). Extension 
of the lithosphere results in decompression of the un- 
derlying asthenosphere, causing partial melting and 
advection of hot asthenospheric material to the base 
of the lithosphere and into the space created by its 
extension (LePichon and Sibuet, 1981; Spohn and 
Schubert, 1983; Neugebauer, 1983; McKenzie and 
Bickle, 1988; Ziegler, 1992). Continued lithosphere 
thinning causes further decompression of the as- 
thenosphere and the generation of additional partial 
melts. The partial melts must then ascend and seg- 
regate from its parent rock by processes that result 
in emplacement of the magma either at the earth's 
surface, within the crust or near the lithosphere- 
asthenosphere boundary. 

Most models presented over the last few years 
place the depths of the phase changes at levels in 
the lower crust (e.g., Fowler and Nisbet, 1990). 
Density increases due to basalt-eclogite phase trans- 
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formations in the lower crust have, for example, 
been proposed as a possible cause of sedimentary 
basin formation (Falvey, 1974; Haxby et al., 1976; 
Artyushkov and Sobolev, 1982; Stel et al., 1993). 

Recent experimental data indicate (see Carswell, 
1990, for a review) that the minimum pressures re- 
quired for eclogite stability in rocks of lower crustal 
composition could be in excess of pressure estimates 
from linear extrapolation of the plagioclase-out re- 
action curves of Green and Ringwood (1967) to the 
low P - T  range. This implies that large-scale eclogite 
formation in the lower crust for crustal thicknesses 
less than 40 km does not necessarily occur (Ring- 
wood, 1975; Carswell, 1990). This is important, as 
currently available seismic data reviewed by Siemov 
(1987) show that the crust underlying most of the 
extensional basins in the FSU is less than 35 km 
thick. As shown by a number of recent studies (e.g., 
Sleep et al., 1980; Kooi, 1991), detailed investiga- 

tions of gravity data could provide useful constraints 
to determine the depth range of the inferred phase 
changes. 

An alternative scenario, placing the phase 
changes in the upper mantle, has been proposed 
by Lobkovsky et al. (1993). In this model the 
lithosphere-asthenosphere boundary prevents further 
rising of the buoyant magma, leading to a concen- 
tration as a magmatic lens in the upper part of an 
asthenospheric bulge (Fig. 21). In the following we 
explore this model, assuming that the basalt melt in 
the asthenospheric bulge was not transported to shal- 
lower levels at the surface but formed a magmatic 
lens in which crystallization took place during the 
process of cooling during the post-rift phase. The 
theoretical foundation for this model is based on 
the behaviour of a permeable porous medium satu- 
rated with a two-phase melt and a visco-deformed 
skeleton (Karakin and Lobkovsky, 1979, 1982; Scott 
and Stevenson, 1986; McKenzie, 1984; Richter and 
McKenzie, 1984). 

Eclogite lens formation in the upper mantle can 
occur as a result of two simultaneously operating 
processes: (1) large-scale upper mantle heating due 
to active uplift of mantle material (hot spot mech- 
anism); and (2) stretching resulting in lithospheric 
thinning and necking and passive uplift of the as- 
thenosphere. This can result in the formation of an 
asthenospheric bulge under the rift and concentra- 
tion of basalt magma due to vertical filtration near 
the bulge roof (Fig. 21). The subsequent evolution 
of the rift system depends on whether magmatic 
liquid remains within the lens after completion of 
the extension or whether it penetrates the crust and 
reaches the surface. The first case corresponds to 
magma consolidation into deep eclogite mineral fa- 
cies and high density eclogite lens formation below 
the lithosphere leading to rifting, subsidence and the 
formation of a deep sedimentary basin (Lobkovsky 
et al., 1993; Ismail-zadeh et al., 1994). The second 
scenario (see Fig. 21) can lead to the formation of 
a flood basalt province or a volcanic rifted margin, 
without noticeable subsidence or even uplift (White 
and McKenzie, 1989; Coffin and Eldholm, 1991). 

Increases in fluid flow rates induced by increases 
in the level of compressional intraplate stress in the 
lithosphere (Van Balen and Cloetingh, 1993) can 
enhance the reaction rates of phase changes and, 
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hence, contribute to the effectivity of eclogitization 
as a mechanism for post-rift subsidence (Cloetingh 
and Kooi, 1992a). 

1. Stretching phase 

~ brittle crust 
ductile crust 

/ r ̧  

2. Magma filtration and basaltic lens formation 

~ - : - .  :.:::.5-:..+.-:-.-:-.+.-:..-~ . . . . . .  

3a. Magma intrusion 

3b. Basalt-eclogite phase transformation and 
deep subsidence 

7. 2. Stress- induced subsidence per turbat ions  

lntraplate stress fluctuations in the lithosphere 
can also directly contribute to non-thermal subsi- 
dence during the post-rift phase of extensional basins 
(Cloetingh, 1988; Kooi and Cloetingh, 1989: Cloet- 
ingh et al., 1989; Ziegler et al., 1995). The Russian 
platform appears to be a good study area to quan- 
tify the effect of the stresses on subsidence and 
uplift patterns. The compressional stresses can lead 
to different expressions on different spatial scales: 
acceleration of subsidence such as observed for the 
North Sea area (Cloetingh et al., 1990), broad-scale 
uplifting such as observed for the north American 
craton (Ziegler et al., 1995) and inversion tecton- 
ics documented extensively in northwestern Europe 
(Ziegler, 1990) and the Donets Basin (Stephenson 
et al., 1993). The actual response of the lithosphere 
to intraplate stresses depends on many factors, in- 
cluding the load configuration and theology of the 
underlying lithosphere (Cloetingh et al., 1989; Kooi 
and Cloetingh, 1992; Ziegler et al., 1995). For high 
levels of intraplate stresses, approaching estimates 
of lithospheric strength (Burov and Diament, 1995; 
Cloetingh and Burov, 1996) these stresses can in- 
duce large-scale lithosphere folds such as observed 
in Central Asia (Nikishin et al., 1993: Burov et al., 
1993) and Arctic Canada (Stephenson et al., 1990). 
Rapid accelaration of the post-rift subsidence of the 
Dnieper basin in Visean-Early Permian times can 
be explained by the effect of superimposed com- 
pressional stresses propagated from the Variscan- 
Dobrogea-Caucasus collisional belt (Nikishin et al., 
1996). Accelaration of subsidence of the Russian 
platform and Timan-Pechora basin in post-Devonian 

 iiiiiii::i:iiii 
3c. Partial transport and phase transition 

Fig. 21. Stages of post-rift evolution of the lithosphere for a 
model invoking an underlying magmatic lens (After Lobkovsky 
et al., 1993). (1) Rifting stage, formation of an asthenospheric 
bulge and filtration of nlagmatic melt. (2) Accumulation of melt 
in the upper part of the bulge and formation of a magmatic lens. 
(3a) Transport of magma from the lens to the surface, accom- 
panied by intensive volcanic activity and intrusion of magmatic 
material in the lower crust. (3b) Crystallization of the magmatic 
lens into an eclogite body, followed by subsidence and formation 
of a deep sedimentary basin. (3c) Partial transport of magma 
from the lens and transition of the remaining part into eclogite 
rocks: this stage is accompanied by a moderate volcanic activity, 
minor subsidence and formation of a shallow sedimentary basin. 
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times and inversion events such as inferred for 
Carboniferous-early Mesozoic times (see Fig. 19) 
are also compatible with this mechanism. Further 
modeling studies and analysis of subsidence data is 
required to quantify these causal relationships. 

8. Conclusions 

We have demonstrated that stretching models of 
rifting and sedimentary basin formation cannot fully 
explain a number  of important features of the evolu- 
tion of rifted basins in the FSU. In our analysis of 
rifted basins in the FSU we have encountered im- 
portant differences in the transition of rifting stages 
to subsequent phases of post-rift evolution. Post-rift 
sedimentary basins were sometimes formed tens or 
even hundreds of mill ion years after the completion 
of the rifting. Post-rift subsidence of vast platform 
areas often begins more or less simultaneously with 
the opening of an oceanic basin on the platform mar- 
gin and ceases or is interrupted simultaneously with 
the closure of the oceanic basin and the formation of 
a collision belt. In some cases the formation of deep 
sedimentary basins occurs without clear evidence for 
extension. A first analysis of basin structures and 

subsidence characteristics of rifted basins in the FSU 
points to an important role of non-thermal subsi- 
dence mechanisms such as phase changes and eclog- 
ite lens formation beneath thinned lithosphere. The 
subsidence record and basin geometries discussed in 
this paper provide also a number  of key examples of 
the effects of regional stresses on basin histories in 
the FSU. Future work has to focus on the develop- 
ment of quantitative models of FSU basin evolution 
constrained by the full range of available geological 
and geophysical data. 
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