20 research outputs found

    Heterogeneous A40926 self-resistance profile in nonomuraea gerenzanensis population informs strain improvement

    Get PDF
    5noopenNonomuraea gerenzanensis ATCC 39727 produces the glycopeptide antibiotic A40926, which is the natural precursor of the semi-synthetic, last-resort drug dalbavancin. To reduce the cost of dalbavancin production, it is mandatory to improve the productivity of the producing strain. Here, we report that the exposure of N. gerenzanensis wild-type population to sub-inhibitory concentrations of A40926 led to the isolation of differently resistant phenotypes to which a diverse A40926 productivity was associated. The most resistant population (G, grand colonies) represented at least the 20% of the colonies growing on 2 µg/mL of A40926. It showed a stable phenotype after sub-culturing and a homogeneous profile of self-resistance to A40926 in population analysis profile (PAP) experiments. The less resistant population (P, petit) was represented by slow-growing colonies to which a lower A40926 productivity was associated. At bioreactor scale, the G variant produced twice more than the wild-type (ca. 400 mg/L A40926 versus less than 200 mg/L, respectively), paving the way for a rational strain improvement based on the selection of increasingly self-resistant colonies.openElisa Binda, Francesca Berini, Flavia Marinelli, Adriana Bava, Fabrizio BeltramettiBinda, Elisa; Berini, Francesca; Marinelli, Flavia; Bava, Adriana; Beltrametti, Fabrizi

    Enzyme bioprospection of marine-derived actinobacteria from the Chilean Coast and New Insight in the aechanism of keratin degradation in Streptomyces sp. G11C

    Get PDF
    Marine actinobacteria are viewed as a promising source of enzymes with potential technological applications. They contribute to the turnover of complex biopolymers, such as pectin, lignocellulose, chitin, and keratin, being able to secrete a wide variety of extracellular enzymes. Among these, keratinases are a valuable alternative for recycling keratin-rich waste, which is generated in large quantities by the poultry industry. In this work, we explored the biocatalytic potential of 75 marine-derived actinobacterial strains, focusing mainly on the search for keratinases. A major part of the strains secreted industrially important enzymes, such as proteases, lipases, cellulases, amylases, and keratinases. Among these, we identified two streptomycete strains that presented great potential for recycling keratin wastes—Streptomyces sp. CHA1 and Streptomyces sp. G11C. Substrate concentration, incubation temperature, and, to a lesser extent, inoculum size were found to be important parameters that influenced the production of keratinolytic enzymes in both strains. In addition, proteomic analysis of culture broths from Streptomyces sp. G11C on turkey feathers showed a high abundance and diversity of peptidases, belonging mainly to the serine and metallo-superfamilies. Two proteases from families S08 and M06 were highly expressed. These results contributed to elucidate the mechanism of keratin degradation mediated by streptomycetes

    Enzymes for consumer products to achieve climate neutrality

    Get PDF
    29 pags., 4 figs., 3 tabs., 1 graf.Accumulated greenhouse gas emissions are expected to increase from 36.2 Giga-tons (Gt) to 60 Gt over the next three decades. The global surface temperature has increased by¿+¿1.09¿°C since 2001, and might increase by¿+¿2.2¿°C in 2100, +3.6¿°C in 2200 and +4.6¿°C in 2500. These emissions and temperature rises cannot be reduced in their entirety, but they can be lowered by using enzymes. Enzymes are proteins that catalyze biochemical reactions that make life possible since 3.8 billion years ago. Scientists have been able to "domesticate" them in such a way that enzymes, and their engineered variants, are now key players of the circular economy. With a world production of 117 Kilo-tons and a trade of 14.5 Billion-dollars, they have the potential to annually decrease CO2 emissions by 1 to 2.5 Billion-tons (Bt), the carbon demand to synthesise chemicals by 200 Million tons (Mt), the amount of chemicals by 90¿Mt, and the economic losses derived from global warming by 0.5%, while promoting biodiversity and our planet¿s health. Our success to increase these benefits will depend on better integration of enzymatic solutions in different sectors.This study was conducted under the auspices of the FuturEnzyme Project funded by the European Union’s Horizon 2020 Research and Innovation Programme under Grant Agreement No. 101000327. MF also acknowledges Grants PID2020-112758RB-I00, PDC2021-121534-I00, and TED2021-130544B-I00 from the MCIN/AEI/10.13039/501100011033 and the European Union (“NextGenerationEU/PRTR”)

    Strain Improvement and Strain Maintenance Revisited. The Use of <i>Actinoplanes teichomyceticus</i> ATCC 31121 Protoplasts in the Identification of Candidates for Enhanced Teicoplanin Production

    No full text
    Multicellular cooperation in actinomycetes is a division of labor-based beneficial trait where phenotypically specialized clonal subpopulations, or genetically distinct lineages, perform complementary tasks. The division of labor improves the access to nutrients and optimizes reproductive and vegetative tasks while reducing the costly production of secondary metabolites and/or of secreted enzymes. In this study, we took advantage of the possibility to isolate genetically distinct lineages deriving from the division of labor, for the isolation of heterogeneous teicoplanin producer phenotypes from Actinoplanes teichomyceticus ATCC 31121. In order to efficiently separate phenotypes and associated genomes, we produced and regenerated protoplasts. This approach turned out to be a rapid and effective strain improvement method, as it allowed the identification of those phenotypes in the population that produced higher teicoplanin amounts. Interestingly, a heterogeneous teicoplanin complex productivity pattern was also identified among the clones. This study suggests that strain improvement and strain maintenance should be integrated with the use of protoplasts as a strategy to unravel the hidden industrial potential of vegetative mycelium

    New Avoparcin-like Molecules from the Avoparcin Producer Amycolatopsis coloradensis ATCC 53629

    No full text
    Amycolatopsis coloradensis ATCC 53629 is the producer of the glycopeptide antibiotic avoparcin. While setting up the production of the avoparcin complex, in view of its use as analytical standard, we uncovered the production of a to-date not described ristosamynil-avoparcin. Ristosamynil-avoparcin is produced together with &alpha;- and &beta;-avoparcin (overall indicated as the avoparcin complex). Selection of one high producer morphological variant within the A. coloradensis population, together with the use of a new fermentation medium, allowed to increase productivity of the avoparcin complex up to 9 g/L in flask fermentations. The selected high producer displayed a non-spore forming phenotype. All the selected phenotypes, as well as the original unselected population, displayed invariably the ability to produce a complex rich in ristosamynil-avoparcin. This suggested that the original strain deposited was not conforming to the description or that long term storage of the lyovials has selected mutants from the original population

    New Avoparcin-like Molecules from the Avoparcin Producer <i>Amycolatopsis coloradensis</i> ATCC 53629

    No full text
    Amycolatopsis coloradensis ATCC 53629 is the producer of the glycopeptide antibiotic avoparcin. While setting up the production of the avoparcin complex, in view of its use as analytical standard, we uncovered the production of a to-date not described ristosamynil-avoparcin. Ristosamynil-avoparcin is produced together with α- and β-avoparcin (overall indicated as the avoparcin complex). Selection of one high producer morphological variant within the A. coloradensis population, together with the use of a new fermentation medium, allowed to increase productivity of the avoparcin complex up to 9 g/L in flask fermentations. The selected high producer displayed a non-spore forming phenotype. All the selected phenotypes, as well as the original unselected population, displayed invariably the ability to produce a complex rich in ristosamynil-avoparcin. This suggested that the original strain deposited was not conforming to the description or that long term storage of the lyovials has selected mutants from the original population

    Novel Mechanism of Glycopeptide Resistance in the A40926 Producer Nonomuraea sp. ATCC 39727▿

    No full text
    In glycopeptide-resistant enterococci and staphylococci, high-level resistance is achieved by replacing the C-terminal d-alanyl-d-alanine of lipid II with d-alanyl-d-lactate, thus reducing glycopeptide affinity for cell wall targets. Reorganization of the cell wall in these organisms is directed by the vanHAX gene cluster. Similar self-resistance mechanisms have been reported for glycopeptide-producing actinomycetes. We investigated glycopeptide resistance in Nonomuraea sp. ATCC 39727, the producer of the glycopeptide A40926, which is the precursor of the semisynthetic antibiotic dalbavancin, which is currently in phase III clinical trials. The MIC of Nonomuraea sp. ATCC 39727 toward A40926 during vegetative growth was 4 μg/ml, but this increased to ca. 20 μg/ml during A40926 production. vanHAX gene clusters were not detected in Nonomuraea sp. ATCC 39727 by Southern hybridization or by PCR with degenerate primers. However, the dbv gene cluster for A40926 production contains a gene, vanY (ORF7), potentially encoding an enzyme capable of removing the terminal d-Ala residue of pentapeptide peptidoglycan precursors. Analysis of UDP-linked peptidoglycan precursors in Nonomuraea sp. ATCC 39727 revealed the predominant presence of the tetrapeptide UDP-MurNAc-l-Ala-d-Glu-meso-Dap-d-Ala and only traces of the pentapeptide UDP-MurNAc-l-Ala-d-Glu-meso-Dap-d-Ala-d-Ala. This suggested a novel mechanism of glycopeptide resistance in Nonomuraea sp. ATCC 39727 that was based on the d,d-carboxypeptidase activity of vanY. Consistent with this, a vanY-null mutant of Nonomuraea sp. ATCC 39727 demonstrated a reduced level of glycopeptide resistance, without affecting A40926 productivity. Heterologous expression of vanY in a sensitive Streptomyces species, Streptomyces venezuelae, resulted in higher levels of glycopeptide resistance
    corecore