502 research outputs found

    Simulation of Radiation Damage to Neural Cells with the Geant4-DNA Toolkit

    Get PDF
    To help in understanding the physical and biological mechanisms underlying effects of cosmic and therapeutic types of radiation on the central nervous system (CNS), we have developed an original neuron application based on the Geant4 Monte Carlo simulation toolkit, in particular on its biophysical extension Geant4-DNA. The applied simulation technique provides a tool for the simulation of physical, physico-chemical and chemical processes (e.g. production of water radiolysis species in the vicinity of neurons) in realistic geometrical model of neural cells exposed to ionizing radiation. The present study evaluates the microscopic energy depositions and water radiolysis species yields within a detailed structure of a selected neuron taking into account its soma, dendrites, axon and spines following irradiation with carbon and iron ions

    Reactive SPS of Al2O3–RE:YAG (RE = Ce; Ce+Gd) composite ceramic phosphors

    Get PDF
    Ultrafine-grained Al2O3–rare earth:yttrium aluminium garnet (Al2O3–RE:YAG) (RE = Ce; Ce+Gd) composite ceramics were obtained for the first time by reactive spark plasma sintering (SPS) using commercially available initial oxide powders. The effect of key sintering parameters (temperature, dwell time, and external pressure (Pload)) on densification peculiarities, structural-phase states, and luminescent properties of composites was studied comprehensively. Differences in phase formation and densification between Ce-doped and Ce,Gd-codoped systems were shown. Parameters of reactive SPS, at which there is partial melting with the formation of near-eutectic zones of the Al2O3–YAG system/coexistence of several variations of the YAG-type phase, were established. Pure corundum–garnet biphasic ceramics with an optimal balance between microstructural and luminescence performance were synthesized at 1425 ℃/30 min/30–60 MPa. The external quantum efficiency (EQE) of the phosphor converters reached 80.7% and 72% with close lifetime of ~63.8 ns, similar to those of commercial Ce:YAG materials, which is promising for further applications in the field of high-power white light-emitting diodes (WLEDs) and laser diodes (LDs)

    Multidifferential study of identified charged hadron distributions in ZZ-tagged jets in proton-proton collisions at s=\sqrt{s}=13 TeV

    Full text link
    Jet fragmentation functions are measured for the first time in proton-proton collisions for charged pions, kaons, and protons within jets recoiling against a ZZ boson. The charged-hadron distributions are studied longitudinally and transversely to the jet direction for jets with transverse momentum 20 <pT<100< p_{\textrm{T}} < 100 GeV and in the pseudorapidity range 2.5<η<42.5 < \eta < 4. The data sample was collected with the LHCb experiment at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 1.64 fb1^{-1}. Triple differential distributions as a function of the hadron longitudinal momentum fraction, hadron transverse momentum, and jet transverse momentum are also measured for the first time. This helps constrain transverse-momentum-dependent fragmentation functions. Differences in the shapes and magnitudes of the measured distributions for the different hadron species provide insights into the hadronization process for jets predominantly initiated by light quarks.Comment: All figures and tables, along with machine-readable versions and any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-013.html (LHCb public pages

    Study of the BΛc+ΛˉcKB^{-} \to \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-} K^{-} decay

    Full text link
    The decay BΛc+ΛˉcKB^{-} \to \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-} K^{-} is studied in proton-proton collisions at a center-of-mass energy of s=13\sqrt{s}=13 TeV using data corresponding to an integrated luminosity of 5 fb1\mathrm{fb}^{-1} collected by the LHCb experiment. In the Λc+K\Lambda_{c}^+ K^{-} system, the Ξc(2930)0\Xi_{c}(2930)^{0} state observed at the BaBar and Belle experiments is resolved into two narrower states, Ξc(2923)0\Xi_{c}(2923)^{0} and Ξc(2939)0\Xi_{c}(2939)^{0}, whose masses and widths are measured to be m(Ξc(2923)0)=2924.5±0.4±1.1MeV,m(Ξc(2939)0)=2938.5±0.9±2.3MeV,Γ(Ξc(2923)0)=0004.8±0.9±1.5MeV,Γ(Ξc(2939)0)=0011.0±1.9±7.5MeV, m(\Xi_{c}(2923)^{0}) = 2924.5 \pm 0.4 \pm 1.1 \,\mathrm{MeV}, \\ m(\Xi_{c}(2939)^{0}) = 2938.5 \pm 0.9 \pm 2.3 \,\mathrm{MeV}, \\ \Gamma(\Xi_{c}(2923)^{0}) = \phantom{000}4.8 \pm 0.9 \pm 1.5 \,\mathrm{MeV},\\ \Gamma(\Xi_{c}(2939)^{0}) = \phantom{00}11.0 \pm 1.9 \pm 7.5 \,\mathrm{MeV}, where the first uncertainties are statistical and the second systematic. The results are consistent with a previous LHCb measurement using a prompt Λc+K\Lambda_{c}^{+} K^{-} sample. Evidence of a new Ξc(2880)0\Xi_{c}(2880)^{0} state is found with a local significance of 3.8σ3.8\,\sigma, whose mass and width are measured to be 2881.8±3.1±8.5MeV2881.8 \pm 3.1 \pm 8.5\,\mathrm{MeV} and 12.4±5.3±5.8MeV12.4 \pm 5.3 \pm 5.8 \,\mathrm{MeV}, respectively. In addition, evidence of a new decay mode Ξc(2790)0Λc+K\Xi_{c}(2790)^{0} \to \Lambda_{c}^{+} K^{-} is found with a significance of 3.7σ3.7\,\sigma. The relative branching fraction of BΛc+ΛˉcKB^{-} \to \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-} K^{-} with respect to the BD+DKB^{-} \to D^{+} D^{-} K^{-} decay is measured to be 2.36±0.11±0.22±0.252.36 \pm 0.11 \pm 0.22 \pm 0.25, where the first uncertainty is statistical, the second systematic and the third originates from the branching fractions of charm hadron decays.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-028.html (LHCb public pages

    Measurement of the ratios of branching fractions R(D)\mathcal{R}(D^{*}) and R(D0)\mathcal{R}(D^{0})

    Full text link
    The ratios of branching fractions R(D)B(BˉDτνˉτ)/B(BˉDμνˉμ)\mathcal{R}(D^{*})\equiv\mathcal{B}(\bar{B}\to D^{*}\tau^{-}\bar{\nu}_{\tau})/\mathcal{B}(\bar{B}\to D^{*}\mu^{-}\bar{\nu}_{\mu}) and R(D0)B(BD0τνˉτ)/B(BD0μνˉμ)\mathcal{R}(D^{0})\equiv\mathcal{B}(B^{-}\to D^{0}\tau^{-}\bar{\nu}_{\tau})/\mathcal{B}(B^{-}\to D^{0}\mu^{-}\bar{\nu}_{\mu}) are measured, assuming isospin symmetry, using a sample of proton-proton collision data corresponding to 3.0 fb1{ }^{-1} of integrated luminosity recorded by the LHCb experiment during 2011 and 2012. The tau lepton is identified in the decay mode τμντνˉμ\tau^{-}\to\mu^{-}\nu_{\tau}\bar{\nu}_{\mu}. The measured values are R(D)=0.281±0.018±0.024\mathcal{R}(D^{*})=0.281\pm0.018\pm0.024 and R(D0)=0.441±0.060±0.066\mathcal{R}(D^{0})=0.441\pm0.060\pm0.066, where the first uncertainty is statistical and the second is systematic. The correlation between these measurements is ρ=0.43\rho=-0.43. Results are consistent with the current average of these quantities and are at a combined 1.9 standard deviations from the predictions based on lepton flavor universality in the Standard Model.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-039.html (LHCb public pages

    About optimal geometric parameters of a developed I-beam with a perforated web

    No full text
    For the first time, questions of optimization of geometric parameters of developed I-beam with a perforated web are considered with the use of the finite element method in PC ANSYS Mechanical. For the linear model of the material, strength and stiffness calculations are performed depending on the shape of the cut: the height of the I-beam development and the distance between the holes. For the I-beam with the highest height, the stability of the web was checked, the first two critical loads and forms of stability loss were obtained. The optimum degree of development is shown on the example of the 12-meter developed I-beam from the initial rolled I-beam with a height of 60 cm. The strength and rigidity of the beam is determined when the length of the distance between the holes is changed

    About optimal geometric parameters of a developed I-beam with a perforated web

    No full text
    For the first time, questions of optimization of geometric parameters of developed I-beam with a perforated web are considered with the use of the finite element method in PC ANSYS Mechanical. For the linear model of the material, strength and stiffness calculations are performed depending on the shape of the cut: the height of the I-beam development and the distance between the holes. For the I-beam with the highest height, the stability of the web was checked, the first two critical loads and forms of stability loss were obtained. The optimum degree of development is shown on the example of the 12-meter developed I-beam from the initial rolled I-beam with a height of 60 cm. The strength and rigidity of the beam is determined when the length of the distance between the holes is changed

    Plasma activated water for an eco sustainable management and defense of agricultural crops

    Get PDF
    Al giorno d'oggi una delle principali sfide è quella di muoversi verso un'agricoltura eco-sostenibile, in grado di preservare la produzione alimentare attraverso un uso limitato di sostanze chimiche. Attualmente, il sostentamento alimentare globale è raggiunto, quasi esclusivamente, mediante un'agricoltura intensiva basata principalmente sulla monocoltura delle colture più redditizie. Questo approccio riduce drasticamente la biodiversità promuovendo, nelle piante, il manifestarsi di svariati stress di origine abiotica e biotica generalmente controllati mediante un cospicuo impiego di pesticidi. Per promuovere una gestione eco-sostenibile delle malattie delle piante e fornire una metodologia totalmente innovativa, è stata applicata, in campo ed in laboratorio, una nuova tecnologia basata sull'utilizzo di acqua attivata dal plasma (PAW). Questa soluzione, caratterizzata dalla presenza al suo interno di specie reattive dell'ossigeno e dell'azoto in ambiente acido, è stata impiegata con l’obiettivo di migliorare le risposte di difesa delle piante. I risultati, ottenuti su diverse piante (pervinche-viti) e condizioni di crescita (vitro-vivo), indicano l’abilità di PAW nel migliorare le risposte di difesa delle piante sia a livello trascrizionale che post-trascrizionale. Questo stimolo, indotto dalla presenza di forme reattive di ossigeno e azoto in soluzione, genera inoltre la sintesi di importanti composti antiossidanti impiegati nell’industria farmaceutica. Infine, l’applicazione di PAW direttamente in campo ha evidenziato come queste proprietà, dimostrate in laboratorio, abbiano portato ad una riduzione di piante positive alla presenza di fitoplasmi e all’aumento dei loro parametri quantitativi di resa.Nowadays one of the main challenges is moving towards an eco-sustainable agriculture, able to preserve the food production through a limited chemicals use. Currently, a global food sustenance is achieved by intensive agriculture mainly based on economic crops monoculture. This approach drastically reduces the biodiversity increasing yield losses due to biotic and abiotic stress and leads to massive use of pesticides. To ensure yield stability and to promote an eco-sustainable management of plant diseases, a new technology based on plasma activated water (PAW), characterized by reactive oxygen and nitrogen species in acid environment, was applied to enhance plant resistance responses. Our results, obtained on different plants (periwinkles- grapevines) and growth conditions (vitro-vivo), indicate that PAW enhances plant defence responses at both, transcriptional and post-transcriptional level, leading likely to the synthesis of anti-oxidant compounds employed in the pharmaceutical industry. Furthermore, in vineyards these effects resulted on reduction of phytoplasma-positive plants and on increasing of quantitative yield parameters

    Simulation of Radiation Damage to Neural Cells with the Geant4-DNA Toolkit

    No full text
    To help in understanding the physical and biological mechanisms underlying effects of cosmic and therapeutic types of radiation on the central nervous system (CNS), we have developed an original neuron application based on the Geant4 Monte Carlo simulation toolkit, in particular on its biophysical extension Geant4-DNA. The applied simulation technique provides a tool for the simulation of physical, physico-chemical and chemical processes (e.g. production of water radiolysis species in the vicinity of neurons) in realistic geometrical model of neural cells exposed to ionizing radiation. The present study evaluates the microscopic energy depositions and water radiolysis species yields within a detailed structure of a selected neuron taking into account its soma, dendrites, axon and spines following irradiation with carbon and iron ions

    Simulation of Radiation Damage to Neural Cells with the Geant4-DNA Toolkit

    No full text
    To help in understanding the physical and biological mechanisms underlying effects of cosmic and therapeutic types of radiation on the central nervous system (CNS), we have developed an original neuron application based on the Geant4 Monte Carlo simulation toolkit, in particular on its biophysical extension Geant4-DNA. The applied simulation technique provides a tool for the simulation of physical, physico-chemical and chemical processes (e.g. production of water radiolysis species in the vicinity of neurons) in realistic geometrical model of neural cells exposed to ionizing radiation. The present study evaluates the microscopic energy depositions and water radiolysis species yields within a detailed structure of a selected neuron taking into account its soma, dendrites, axon and spines following irradiation with carbon and iron ions
    corecore