11 research outputs found
CAMISIM: Simulating metagenomes and microbial communities
© 2019 The Author(s). Background: Shotgun metagenome data sets of microbial communities are highly diverse, not only due to the natural variation of the underlying biological systems, but also due to differences in laboratory protocols, replicate numbers, and sequencing technologies. Accordingly, to effectively assess the performance of metagenomic analysis software, a wide range of benchmark data sets are required. Results: We describe the CAMISIM microbial community and metagenome simulator. The software can model different microbial abundance profiles, multi-sample time series, and differential abundance studies, includes real and simulated strain-level diversity, and generates second- and third-generation sequencing data from taxonomic profiles or de novo. Gold standards are created for sequence assembly, genome binning, taxonomic binning, and taxonomic profiling. CAMSIM generated the benchmark data sets of the first CAMI challenge. For two simulated multi-sample data sets of the human and mouse gut microbiomes, we observed high functional congruence to the real data. As further applications, we investigated the effect of varying evolutionary genome divergence, sequencing depth, and read error profiles on two popular metagenome assemblers, MEGAHIT, and metaSPAdes, on several thousand small data sets generated with CAMISIM. Conclusions: CAMISIM can simulate a wide variety of microbial communities and metagenome data sets together with standards of truth for method evaluation
Critical Assessment of Metagenome Interpretation:A benchmark of metagenomics software
International audienceIn metagenome analysis, computational methods for assembly, taxonomic profilingand binning are key components facilitating downstream biological datainterpretation. However, a lack of consensus about benchmarking datasets andevaluation metrics complicates proper performance assessment. The CriticalAssessment of Metagenome Interpretation (CAMI) challenge has engaged the globaldeveloper community to benchmark their programs on datasets of unprecedentedcomplexity and realism. Benchmark metagenomes were generated from newlysequenced ~700 microorganisms and ~600 novel viruses and plasmids, includinggenomes with varying degrees of relatedness to each other and to publicly availableones and representing common experimental setups. Across all datasets, assemblyand genome binning programs performed well for species represented by individualgenomes, while performance was substantially affected by the presence of relatedstrains. Taxonomic profiling and binning programs were proficient at high taxonomicranks, with a notable performance decrease below the family level. Parametersettings substantially impacted performances, underscoring the importance ofprogram reproducibility. While highlighting current challenges in computationalmetagenomics, the CAMI results provide a roadmap for software selection to answerspecific research questions