196 research outputs found

    Local and remote climate impacts of future African aerosol emissions

    Get PDF
    The potential future trend in African aerosol emissions is uncertain, with a large range found in future scenarios used to drive climate projections. The future climate impact of these emissions is therefore uncertain. Using the Shared Socioeconomic Pathway (SSP) scenarios, transient future experiments were performed with the UK Earth System Model (UKESM1) to investigate the effect of African emissions following the high emission SSP370 scenario as the rest of the world follows the more sustainable SSP119, relative to a global SSP119 control. This isolates the effect of Africa following a relatively more polluted future emissions pathway. Compared to SSP119, SSP370 projects higher non-biomass-burning (non-BB) aerosol emissions, but lower biomass burning emissions, over Africa. Increased shortwave (SW) absorption by black carbon aerosol leads to a global warming, but the reduction in the local incident surface radiation close to the emissions is larger, causing a local cooling effect. The local cooling persists even when including the higher African CO2 emissions under SSP370 than SSP119. The global warming is significantly higher by 0.07 K when including the non-BB aerosol increases and higher still (0.22 K) when including all aerosols and CO2. Precipitation also exhibits complex changes. Northward shifts in the Inter-tropical Convergence Zone (ITCZ) occur under relatively warm Northern Hemisphere land, and local rainfall is enhanced due to mid-tropospheric instability from black carbon absorption. These results highlight the importance of future African aerosol emissions for regional and global climate and the spatial complexity of this climate influence

    Distribution and morphology of non-persistent contrail and persistent contrail formation areas in ERA5

    Get PDF
    The contrail formation potential as well as its temporal and spatial distribution is estimated using meteorological conditions of temperature and relative humidity from the ERA5 re-analysis provided by the European Centre for Medium-Range Weather Forecasts. Contrail formation is estimated with the Schmidt–Appleman criterion (SAc), solely considering thermodynamic effects. The focus is on a region ranging from the Eastern United States (110–65° W) to central Europe (5° W–30° E). Around 18 000 flight trajectories from the In-service Aircraft for a Global Observing System (IAGOS) are used as a representative subset of transatlantic, commercial flights. The typical crossing distance through a contrail-prone area is determined based on IAGOS measurements of temperature T and relative humidity r and then based on co-located ERA5 simulations of the same quantities. Differences in spatial resolution between IAGOS and ERA5 are addressed from an aircraft-centered perspective, using 1 km segments, and a model-centered perspective, using 19 km flight sections. Using the aircraft-centered approach, 50 % of the crossings of persistent contrail (PC) regions based on IAGOS are shorter than 9 km, while in ERA5 the median is 155 km. Time-averaged IAGOS data lead to a median crossing length of 66 km. The difference between the two data sets is attributed to the higher variability of r in IAGOS compared to ERA5. The model-centered approach yields similar results, but typical crossing lengths are larger by only up to 10 %. Binary masks of PC formation are created by applying the SAc on the two-dimensional fields of T and r from ERA5. In a second step the morphology of PC regions is also assessed. Half of the PC regions in ERA5 are found to be smaller than ≈ 35 000 km2 (at 200 hPa), and the median of the maximum dimension is shorter than 760 km (at 200 hPa). Furthermore, PC regions tend to be of near-circular shape with a tendency to a slight oval shape and a preferred alignment along the dominant westerly flow. Seasonal, vertical distributions of PC formation potential are characterized by a maximum between 250 and 200 hPa. is subject to seasonal variations with a maximum in magnitude and extension during the winter months and a minimum during summer. The horizontal distribution of PC regions suggests that PC regions are likely to appear in the same location on adjacent pressure levels. Climatologies of T, r, wind speed U, and resulting PC formation potential are calculated to identify the constraining effects of T and r on . PC formation is primarily limited by conditions that are too warm below and conditions that are too dry above the formation region. The distribution of PCs is slanted towards lower altitudes from 30 to 70° N, following lines of constant T and r. For an observed co-location of high U and , it remains unclear whether PC formation and the jet stream are favored by the same meteorological conditions or if the jet stream itself favors PC occurrence. This analysis suggests that some PC regions will be difficult to avoid by rerouting aircraft because of their large vertical and horizontal extents.</p

    Southeast Atlantic Ocean aerosol direct radiative effects over clouds: Comparison of observations and simulations

    Get PDF
    This is the final version. Available from AIP Publishing via the DOI in this recordAbsorbing aerosols exert a warming or a cooling effect on the Earth's system, depending on the circumstances. The direct radiative effect (DRE) of absorbing aerosols is negative (cooling) at the top-of-the-atmosphere (TOA) over a dark surface like the ocean, as the aerosols increase the planetary albedo, but it is positive (warming) over bright backgrounds like clouds. Furthermore, radiation absorption by aerosols heat the atmosphere locally, and, through rapid adjustments of the atmospheric column and cloud dynamics, the net effect can be amplified considerably. We developed a technique to study the absorption of radiation of smoke over low lying clouds using satellite spectrometry. The TOA DRE of smoke over clouds is large and positive over the southeast Atlantic Ocean off the west coast of Africa, which can be explained by the large decrease of reflected radiation by a polluted cloud, especially in the UV. However, general circulation models (GCMs) fail to reproduce these strong positive DRE, and in general GCMs disagree on the magnitude and even sign of the aerosol DRE in the southeast Atlantic region. Our satellite-derived DRE measurements show clear seasonal and inter-annual variations, consistent with other satellite measurements, which are not reproduced by GCMs. A comparison with model results showed discrepancies with the Ångström exponent of the smoke aerosols, which is larger than assumed in simulations, and a sensitivity to emission scenarios. However, this was not enough to explain the discrepancies, and we suspect that the modeling of cloud distributions and microphysics will have the necessary larger impact on DRE that will explain the differences between observations and modeling.Netherlands Space Offic

    Local and remote climate impacts of future African aerosol emissions

    Get PDF
    The potential future trend in African aerosol emissions is uncertain, with a large range found in future scenarios used to drive climate projections. The future climate impact of these emissions is therefore uncertain. Using the Shared Socioeconomic Pathway (SSP) scenarios, transient future experiments were performed with the UK Earth System Model (UKESM1) to investigate the effect of African emissions following the high emission SSP370 scenario as the rest of the world follows the more sustainable SSP119, relative to a global SSP119 control. This isolates the effect of Africa following a relatively more polluted future emissions pathway. Compared to SSP119, SSP370 projects higher non-biomass-burning (non-BB) aerosol emissions, but lower biomass burning emissions, over Africa. Increased shortwave (SW) absorption by black carbon aerosol leads to a global warming, but the reduction in the local incident surface radiation close to the emissions is larger, causing a local cooling effect. The local cooling persists even when including the higher African CO2 emissions under SSP370 than SSP119. The global warming is significantly higher by 0.07 K when including the non-BB aerosol increases and higher still (0.22 K) when including all aerosols and CO2. Precipitation also exhibits complex changes. Northward shifts in the Inter-tropical Convergence Zone (ITCZ) occur under relatively warm Northern Hemisphere land, and local rainfall is enhanced due to mid-tropospheric instability from black carbon absorption. These results highlight the importance of future African aerosol emissions for regional and global climate and the spatial complexity of this climate influence

    A process-based evaluation of dust-emitting winds in the CMIP5 simulation of HadGEM2-ES

    Get PDF
    Despite the importance of dust aerosol in the Earth system, state-of-the-art models show a large variety for North African dust emission. This study presents a systematic evaluation of dust emitting-winds in 30 years of the historical model simulation with the UK Met Office Earth-system model HadGEM2-ES for the Coupled Model Intercomparison Project Phase 5. Isolating the effect of winds on dust emission and using an automated detection for nocturnal low-level jets (NLLJs) allow an in-depth evaluation of the model performance for dust emission from a meteorological perspective. The findings highlight that NLLJs are a key driver for dust emission in HadGEM2-ES in terms of occurrence frequency and strength. The annually and spatially averaged occurrence frequency of NLLJs is similar in HadGEM2-ES and ERA-Interim from the European Centre for Medium-Range Weather Forecasts. Compared to ERA-Interim, a stronger pressure ridge over northern Africa in winter and the southward displaced heat low in summer result in differences in location and strength of NLLJs. Particularly the larger geostrophic winds associated with the stronger ridge have a strengthening effect on NLLJs over parts of West Africa in winter. Stronger NLLJs in summer may rather result from an artificially increased mixing coefficient under stable stratification that is weaker in HadGEM2-ES. NLLJs in the Bodélé Depression are affected by stronger synoptic-scale pressure gradients in HadGEM2-ES. Wintertime geostrophic winds can even be so strong that the associated vertical wind shear prevents the formation of NLLJs. These results call for further model improvements in the synoptic-scale dynamics and the physical parametrization of the nocturnal stable boundary layer to better represent dust-emitting processes in the atmospheric model. The new approach could be used for identifying systematic behavior in other models with respect to meteorological processes for dust emission. This would help to improve dust emission simulations and contribute to decreasing the currently large uncertainty in climate change projections with respect to dust aerosol
    • …
    corecore