84 research outputs found
Genetic dissection of maize phenology using an intraspecific introgression library
Background: Collections of nearly isogenic lines where each line carries a delimited portion of a donor source genome into a common recipient genetic background are known as introgression libraries and have already shown to be instrumental for the dissection of quantitative traits. By means of marker-assisted backcrossing, we have produced an introgression library using the extremely early-flowering maize (Zea mays L.) variety Gasp\ue9 Flint and the elite line B73 as donor and recipient genotypes, respectively, and utilized this collection to investigate the genetic basis of flowering time and related traits of adaptive and agronomic importance in maize.Results: The collection includes 75 lines with an average Gasp\ue9 Flint introgression length of 43.1 cM. The collection was evaluated for flowering time, internode length, number of ears, number of nodes (phytomeres), number of nodes above the ear, number and proportion of nodes below the ear and plant height. Five QTLs for flowering time were mapped, all corresponding to major QTLs for number of nodes. Three additional QTLs for number of nodes were mapped. Besides flowering time, the QTLs for number of nodes drove phenotypic variation for plant height and number of nodes below and above the top ear, but not for internode length. A number of apparently Mendelian-inherited phenotypes were also observed.Conclusions: While the inheritance of flowering time was dominated by the well-known QTL Vgt1, a number of other important flowering time QTLs were identified and, thanks to the type of plant material here utilized, immediately isogenized and made available for fine mapping. At each flowering time QTL, early flowering correlated with fewer vegetative phytomeres, indicating the latter as a key developmental strategy to adapt the maize crop from the original tropical environment to the northern border of the temperate zone (southern Canada), where Gasp\ue9 Flint was originally cultivated. Because of the trait differences between the two parental genotypes, this collection will serve as a permanent source of nearly isogenic materials for multiple studies of QTL analysis and cloning. \ua9 2011 Salvi et al; licensee BioMed Central Ltd
Ammonia as hydrogen carrier for transport application
As the interest in hydrogen to help the decarbonization of the transport sector is growing fast, the interest in new methods for its storage is a key point to improve its diffusion in many contexts, investigating innovative methods. Ammonia is a promising solution, as its hydrogen content per volume unit is higher than hydrogen stored in liquid form; furthermore, ammonia does not require cryogenic temperature nor high amounts of energy for liquefaction. In this study, two different plant layouts have been investigated, considering as a case study an ammonia-to-hydrogen conversion plant to feed a bus station composed of ten hydrogen buses (106 kg H2/day). In the end, a techno-economic analysis is performed to investigate the Levelized Cost of Hydrogen production from ammonia for the two cases and evaluate the most feasible solution. For both the plant layouts, the following results are obtained: (i) the optimal size of the main components; (ii) the global energy efficiency; (iii) the purity of H2 obtained; (iv) the H2 production cost. Finally, the size effect is investigated to evaluate the economic feasibility of the best plant solution for large-scale hydrogen refuelling stations (2000 kg H2/day), which are a more representative case for future implementations
BDNF Val66Met polymorphism and protein levels in Amniotic Fluid
Brain-Derived Neurotrophic Factor (BDNF) is a neurotrophin which plays survival- and growth-promoting activity in neuronal cells and it is involved in cellular plasticity mechanisms as it controls activity dependent synaptic transmission. A functional polymorphism (Val66Met) in the pro-region of BDNF, which affects the intracellular trafficking of proBDNF has been associated with memory and cognitive deficits as well as to an increased susceptibility for several psychiatric disorders especially those with a neurodevelopmental origin. To date, no study has evaluated the influence of the Val66Met polymorphism on BDNF levels in a peripheral system that may reflect fetal neurodevelopment. Therefore we investigated in amniotic fluids (AF) obtained from 139 healthy women during 15-17 week of pregnancy, BDNF protein levels in correlation with the Val66Met polymorphism
Molecular insights into cell toxicity of a novel familial amyloidogenic variant of β2-microglobulin
The first genetic variant of β(2)‐microglobulin (b2M) associated with a familial form of systemic amyloidosis has been recently described. The mutated protein, carrying a substitution of Asp at position 76 with an Asn (D76N b2M), exhibits a strongly enhanced amyloidogenic tendency to aggregate with respect to the wild‐type protein. In this study, we characterized the D76N b2M aggregation path and performed an unprecedented analysis of the biochemical mechanisms underlying aggregate cytotoxicity. We showed that, contrarily to what expected from other amyloid studies, early aggregates of the mutant are not the most toxic species, despite their higher surface hydrophobicity. By modulating ganglioside GM1 content in cell membrane or synthetic lipid bilayers, we confirmed the pivotal role of this lipid as aggregate recruiter favouring their cytotoxicity. We finally observed that the aggregates bind to the cell membrane inducing an alteration of its elasticity (with possible functional unbalance and cytotoxicity) in GM1‐enriched domains only, thus establishing a link between aggregate‐membrane contact and cell damage
A specific nanobody prevents amyloidogenesis of D76N \u3b22-microglobulin in vitro and modifies its tissue distribution in vivo
Systemic amyloidosis is caused by misfolding and aggregation of globular proteins in vivo for which
effective treatments are urgently needed. Inhibition of protein self-aggregation represents an attractive
therapeutic strategy. Studies on the amyloidogenic variant of \u3b22-microglobulin, D76N, causing
hereditary systemic amyloidosis, have become particularly relevant since fibrils are formed in vitro in
physiologically relevant conditions. Here we compare the potency of two previously described inhibitors
of wild type \u3b22-microglobulin fibrillogenesis, doxycycline and single domain antibodies (nanobodies).
The \u3b22-microglobulin -binding nanobody, Nb24, more potently inhibits D76N \u3b22-microglobulin
fibrillogenesis than doxycycline with complete abrogation of fibril formation. In \u3b22-microglobulin knock
out mice, the D76N \u3b22-microglobulin/ Nb24 pre-formed complex, is cleared from the circulation at the
same rate as the uncomplexed protein; however, the analysis of tissue distribution reveals that the
interaction with the antibody reduces the concentration of the variant protein in the heart but does
not modify the tissue distribution of wild type \u3b22-microglobulin. These findings strongly support the
potential therapeutic use of this antibody in the treatment of systemic amyloidosis
In Vitro Aggregation Behavior of a Non-Amyloidogenic λ Light Chain Dimer Deriving from U266 Multiple Myeloma Cells
Excessive production of monoclonal light chains due to multiple myeloma can induce aggregation-related disorders, such as light chain amyloidosis (AL) and light chain deposition diseases (LCDD). In this work, we produce a non-amyloidogenic IgE λ light chain dimer from human mammalian cells U266, which originated from a patient suffering from multiple myeloma, and we investigate the effect of several physicochemical parameters on the in vitro stability of this protein. The dimer is stable in physiological conditions and aggregation is observed only when strong denaturating conditions are applied (acidic pH with salt at large concentration or heating at melting temperature Tm at pH 7.4). The produced aggregates are spherical, amorphous oligomers. Despite the larger β-sheet content of such oligomers with respect to the native state, they do not bind Congo Red or ThT. The impossibility to obtain fibrils from the light chain dimer suggests that the occurrence of amyloidosis in patients requires the presence of the light chain fragment in the monomer form, while dimer can form only amorphous oligomers or amorphous deposits. No aggregation is observed after denaturant addition at pH 7.4 or at pH 2.0 with low salt concentration, indicating that not a generic unfolding but specific conformational changes are necessary to trigger aggregation. A specific anion effect in increasing the aggregation rate at pH 2.0 is observed according to the following order: SO4−≫Cl−>H2PO4−, confirming the peculiar role of sulfate in promoting protein aggregation. It is found that, at least for the investigated case, the mechanism of the sulfate effect is related to protein secondary structure changes induced by anion binding
Time dependence of the helium flux measured by PAMELA
Precision measurements of the Z = 2 component in cosmic radiation provide crucial information about the origin and propagation of the second most abundant cosmic ray species in the Galaxy (9% of the total). These measurements, acquired with the PAMELA space experiment orbiting Earth, allow to study solar modulation in details. Helium modulation is compared to the modulation of protons to study possible dependencies on charge and mass. The time dependence of helium fluxes on a monthly basis measured by PAMELA has been studied for the period between July 2006 to January 2016 in the energy range from 800 MeV/n to ~ 20 GeV/n
- …