11 research outputs found

    Software for the frontiers of quantum chemistry:An overview of developments in the Q-Chem 5 package

    Get PDF
    This article summarizes technical advances contained in the fifth major release of the Q-Chem quantum chemistry program package, covering developments since 2015. A comprehensive library of exchange–correlation functionals, along with a suite of correlated many-body methods, continues to be a hallmark of the Q-Chem software. The many-body methods include novel variants of both coupled-cluster and configuration-interaction approaches along with methods based on the algebraic diagrammatic construction and variational reduced density-matrix methods. Methods highlighted in Q-Chem 5 include a suite of tools for modeling core-level spectroscopy, methods for describing metastable resonances, methods for computing vibronic spectra, the nuclear–electronic orbital method, and several different energy decomposition analysis techniques. High-performance capabilities including multithreaded parallelism and support for calculations on graphics processing units are described. Q-Chem boasts a community of well over 100 active academic developers, and the continuing evolution of the software is supported by an “open teamware” model and an increasingly modular design

    Software for the frontiers of quantum chemistry: An overview of developments in the Q-Chem 5 package

    No full text
    This article summarizes technical advances contained in the fifth major release of the Q-Chem quantum chemistry program package, covering developments since 2015. A comprehensive library of exchange–correlation functionals, along with a suite of correlated many-body methods, continues to be a hallmark of the Q-Chem software. The many-body methods include novel variants of both coupled-cluster and configuration-interaction approaches along with methods based on the algebraic diagrammatic construction and variational reduced density-matrix methods. Methods highlighted in Q-Chem 5 include a suite of tools for modeling core-level spectroscopy, methods for describing metastable resonances, methods for computing vibronic spectra, the nuclear–electronic orbital method, and several different energy decomposition analysis techniques. High-performance capabilities including multithreaded parallelism and support for calculations on graphics processing units are described. Q-Chem boasts a community of well over 100 active academic developers, and the continuing evolution of the software is supported by an “open teamware” model and an increasingly modular design

    Software for the frontiers of quantum chemistry: An overview of developments in the Q-Chem 5 package

    No full text
    This article summarizes technical advances contained in the fifth major release of the Q-Chem quantum chemistry program package, covering developments since 2015. A comprehensive library of exchange–correlation functionals, along with a suite of correlated many-body methods, continues to be a hallmark of the Q-Chem software. The many-body methods include novel variants of both coupled-cluster and configuration-interaction approaches along with methods based on the algebraic diagrammatic construction and variational reduced density-matrix methods. Methods highlighted in Q-Chem 5 include a suite of tools for modeling core-level spectroscopy, methods for describing metastable resonances, methods for computing vibronic spectra, the nuclear–electronic orbital method, and several different energy decomposition analysis techniques. High-performance capabilities including multithreaded parallelism and support for calculations on graphics processing units are described. Q-Chem boasts a community of well over 100 active academic developers, and the continuing evolution of the software is supported by an “open teamware” model and an increasingly modular design

    The prognostic importance of chronic end-stage diseases in geriatric patients admitted to 163 Italian ICUs

    Get PDF
    BACKGROUND: The number of elderly patients undergoing major surgical interventions and then needing admission to intensive care unit (ICU) grows steadily. We investigated this issue in a cohort of 232,278 patients admitted in five years (2011-2015) to 163 Italian general ICUs. METHODS: Surgical patients older than 75 registered in the GiViTI MargheritaPROSAFE project were analyzed. The impact on hospital mortality of important chronic conditions (severe COPD, NYHA class IV, dementia, end-stage renal disease, cirrhosis with portal hypertension) was investigated with two prognostic models developed yearly on patients staying in the ICU less or more than 24 hours. RESULTS: 44,551 elderly patients (19.2%) underwent emergency (47.3%) or elective surgery (52.7%). At least one severe comorbidity was present in 14.6% of them, yielding a higher hospital mortality (32.4%, vs. 21.1% without severe comorbidity). In the models for patients staying in the ICU 24 hours or more, cirrhosis, NYHA class IV, and severe COPD were constant independent predictors of death (adjusted odds ratios [ORs] range 1.67-1.97, 1.54-1.91, and 1.34-1.50, respectively), while dementia was statistically significant in four out of five models (adjusted ORs 1.23-1.28). End-stage renal disease, instead, never resulted to be an independent prognostic factor. For patients staying in the ICU less than 24 hours, chronic comorbidities were only occasionally independent predictors of death. CONCLUSIONS: Our study confirms that elderly surgical patients represent a relevant part of all ICUs admissions. About one of seven bear at least one severe chronic comorbidity, that, excluding end-stage renal disease, are all strong independent predictors of hospital death

    B. Sprachwissenschaft.

    No full text

    The role of the intensive care unit in real-time surveillance of emerging pandemics: the Italian GiViTI experience

    No full text
    The prompt availability of reliable epidemiological information on emerging pandemics is crucial for public health policy-makers. Early in 2013, a possible new H1N1 epidemic notified by an intensive care unit (ICU) to GiViTI, the Italian ICU network, prompted the re-activation of the real-time monitoring system developed during the 2009-2010 pandemic. Based on data from 216 ICUs, we were able to detect and monitor an outbreak of severe H1N1 infection, and to compare the situation with previous years. The timely and correct assessment of the severity of an epidemic can be obtained by investigating ICU admissions, especially when historical comparisons can be made

    Software for the frontiers of quantum chemistry: An overview of developments in the Q-Chem 5 package

    No full text
    This article summarizes technical advances contained in the fifth major release of the Q-Chem quantum chemistry program package, covering developments since 2015. A comprehensive library of exchange-correlation functionals, along with a suite of correlated many-body methods, continues to be a hallmark of the Q-Chem software. The many-body methods include novel variants of both coupled-cluster and configuration-interaction approaches along with methods based on the algebraic diagrammatic construction and variational reduced density-matrix methods. Methods highlighted in Q-Chem 5 include a suite of tools for modeling core-level spectroscopy, methods for describing metastable resonances, methods for computing vibronic spectra, the nuclear-electronic orbital method, and several different energy decomposition analysis techniques. High-performance capabilities including multithreaded parallelism and support for calculations on graphics processing units are described. Q-Chem boasts a community of well over 100 active academic developers, and the continuing evolution of the software is supported by an "open teamware" model and an increasingly modular design
    corecore