6,631 research outputs found

    A Lensed Arc in the Low Redshift Cluster Abell 2124

    Full text link
    We report the discovery of an arc-like object 27" from the center of the cD galaxy in the redshift z=0.066z=0.066 cluster A2124. Observations with the Keck II telescope reveal that the object is a background galaxy at z=0.573z=0.573, apparently lensed into an arc of length \sim 8 \farcs5 and total R magnitude mR=20.86±0.07m_R = 20.86\pm0.07. The width of the arc is resolved; we estimate it to be ∌\sim0\farcs6 after correcting for seeing. A lens model of the A2124 core mass distribution consistent with the cluster galaxy velocity dispersion reproduces the observed arc geometry and indicates a magnification factor \gta 9. With this magnification, the strength of the [OII] \lambda 3727 line implies a star-formation rate of SFR \sim 0.4 h^{-2}\msun yr^{-1}$. A2124 thus appears to be the lowest redshift cluster known to exhibit strong lensing of a distant background galaxy.Comment: 6 pages using emulateapj.sty; 4 Postscript figures; Figure 4 uses color. Accepted for publication, but ApJ Letters' new policy of counting data images makes the manuscript too long; will appear in main journal. This final version has minor correction

    On the macroion virial contribution to the osmotic pressure in charge-stabilized colloidal suspensions

    Full text link
    Our interest goes to the different virial contributions to the equation of state of charged colloidal suspensions. Neglect of surface effects in the computation of the colloidal virial term leads to spurious and paradoxical results. This pitfall is one of the several facets of the danger of a naive implementation of the so called One Component Model, where the micro-ionic degrees of freedom are integrated out to only keep in the description the mesoscopic (colloidal) degrees of freedom. On the other hand, due incorporation of wall induced forces dissolves the paradox brought forth in the naive approach, provides a consistent description, and confirms that for salt-free systems, the colloidal contribution to the pressure is dominated by the micro-ionic one. Much emphasis is put on the no salt case but the situation with added electrolyte is also discussed

    The black hole candidate MAXI J1659-152: spectral and timing analysis during its 2010 outburst

    Full text link
    We present a comprehensive spectral-timing study of the black hole candidate MAXI J1659-152 during its 2010 outburst. We analysed 65 RXTE observations taken along this period and computed the fundamental diagrams commonly used to study black hole transients. We fitted power density and energy spectra and studied the evolution of the spectral and timing parameters along the outburst. We discuss the evolution of the variability observed at different energy bands on the basis of the relative contribution of the disc and hard components to the energy spectrum of the source. We conclude that hard emission accounts for the observed fast variability, it being strongly quenched when type-B oscillations are observed. We find that both disc and hard emission are responsible for local count-rate peaks until the system reaches the soft state. From that point, the peaks are only observed in the hard component, whereas the thermal component drops monotonically probably following the accretion rate decrease. We have also computed time-lags between soft and hard X-ray variability confirming that lags are larger during the hard-to-soft transition than during the hard state.Comment: Accepted for publication in MNRAS. 12 pages, 8 figures, 2 table

    The X-ray Properties of Low-Frequency Quasi-Periodic Oscillations from GRS 1915+105 up to 120 keV

    Get PDF
    We present a study of the properties of strong 0.8-3.0 Hz quasi-periodic oscillations (QPOs) that occurred during 1997 RXTE observations of the microquasar GRS 1915+105 in the low-hard state. The high count rates allow us to track individual QPO peaks, and we exploit this to develop a QPO folding technique. In contrast to previous QPO studies with RXTE, we emphasize the high energy QPO properties and report the detection of a QPO in the 60-124 keV energy band. Our technique allows us, for the first time, to measure the phase of the QPO harmonics relative to the fundamental. Variation in this phase difference leads to changes in the shape of the QPO profile with energy and over time. The strength of the QPO fundamental increases up to 19 keV, but the data do not suggest that the strength continues to increase above this energy. In some cases, the QPO amplitudes in the 30-60 keV and 60-124 keV energy bands are significantly less than in the 13-19 keV and 19-29 keV energy bands. We also use our technique to measure the phase lag of the QPO fundamental and harmonics. In the case where negative phase lags are detected for the fundamental, positive phase lags are detected for the first harmonic.Comment: Submitted to ApJ, Refereed, 9 page

    Relations between x-ray timing features and spectral parameters of galactic black hole x-ray binaries

    Get PDF
    We present a study of correlations between spectral and timing parameters for a sample of black hole X-ray binary candidates. Data are taken from GX 339-4, H 1743-322, and XTE J1650-500, as the Rossi X-ray Timing Explorer (RXTE) observed complete outbursts of these sources. In our study we investigate outbursts that happened before the end of 2009 to make use of the high-energy coverage of the HEXTE detector and select observations that show a certain type of quasi-periodic oscillations (type-C QPOs). The spectral parameters are derived using the empirical convolution model simpl to model the Comptonized component of the emission together with a disc blackbody for the emission of the accretion disc. Additional spectral features, namely a reflection component, a high-energy cut-off, and excess emission at 6.4 keV, are taken into account. Our investigations confirm the known positive correlation between photon index and centroid frequency of the QPOs and reveal an anti-correlation between the fraction of up-scattered photons and the QPO frequency. We show that both correlations behave as expected in the “sombrero” geometry. Furthermore, we find that during outburst decay the correlation between photon index and QPO frequency follow a general track, independent of individual outbursts

    The faint 2011 outburst of the black hole X-ray binary candidate MAXI J1543-564

    Full text link
    We report on a spectral-timing analysis of the black hole X-ray binary candidate MAXI J1543- 564 during its 2011 outburst. All 99 pointed observations of this outburst obtained with the Rossi X-ray Timing Explorer (RXTE) were included in our study. We computed the fundamental diagrams commonly used to study black hole transients, and fitted power density and energy spectra to study the spectral and timing parameters along the outburst. The determination of timing parameters and hence of exact transitions between different states was hampered by the rather low count rate at which his outburst was observed. We detected two periods of exponential decay, one after the source was brightest, which was interrupted by several flares, and another one during the high/soft state. The detection of these decays allowed us to obtain an estimate for the source distance of at least 8.5 kpc. This leaves two possible explanations for the observed low count rate; either the source has a distance similar to that of other black hole X-ray binary candidates and it is intrinsically faint, or it has a similar luminosity, but is located more than 12 kpc away from us. Furthermore, in the high/soft state the source spectrum appears to be completely disc dominated.Comment: 11 pages, 5 figures, accepted for publication in MNRA

    On the two types of steady hard X-ray states of GRS 1915+105

    Get PDF
    Using the data of 5 years of RXTE observations we investigate the X-ray spectral and timing properties of GRS 1915+105 during the hard steady states. According to the results of our simultaneous X-ray spectral and timing analysis the behavior the source during the hard steady states can be reduced to a couple of major distinct types. i) Type I states: The dominant hard component of the energy spectrum has characteristic quasi- exponential cut-off at 50-120 keV. The broad-band power density spectrum of the source shows significant high frequency noise component with a cut-off at 60-80 Hz. ii) Type II states: The hard spectral component has a break in its slope at ~12-20 keV. The high frequency part of the power density spectrum fades quickly lacking significant variability at frequencies higher than ~30 Hz. These two types of the X-ray hard states are also clearly distinguished by their properties in the radio band: while during the type I observations the source tends to be 'radio-quiet', the type II observations are characterized by high level of radio flux ('plateau' radio states). In this work we demonstrate aforementioned differences using the data of 12 representative hard steady state observations. We conclude that the difference between these two types can be probably explained in terms of different structure of the accretion flow in the immediate vicinity of the compact object due to presence of relativistic outflow of matter.Comment: 16 pages, including 3 figures, submitted to Astrophysical Journal Letter

    Broad-band X-ray spectral evolution of GX 339-4 during a state transition

    Get PDF
    We report on X-ray and soft gamma-ray observations of the black-hole candidate GX 339-4 during its 2007 outburst, performed with the RXTE and INTEGRAL satellites. The hardness-intensity diagram of all RXTE/PCA data combined shows a q-shaped track similar to that observed in previous outbursts.The evolution in the diagram suggested that a transition from hard-intermediate state to soft-intermediate state occurred, simultaneously with INTEGRAL observations performed in March. The transition is confirmed by the timing analysis presented in this work, which reveals that a weak type-A quasi-periodic oscillation (QPO) replaces a strong type-C QPO. At the same time, spectral analysis shows that the flux of the high-energy component shows a significant decrease in its flux. However, we observe a delay (roughly one day) between variations of the spectral parameters of the high-energy component and changes in the flux and timing properties. The changes in the high-energy component can be explained either in terms the high-energy cut-off or in terms of a variations in the reflection component. We compare our results with those from a similar transition during the 2004 outburst of GX 339-4.Comment: 8 pages, 6 figures, accepted for publication in MNRAS Main Journa

    Strong Aperiodic X-ray Variability and Quasi-Periodic Oscillation in X-ray Nova XTE J1550-564

    Get PDF
    We report the discovery of strong aperiodic X-ray variability and quasi-periodic oscillation (QPO) in the X-ray light curves of a new X-ray Nova, XTE J1550-564, and the evolution of the observed temporal properties during the rise of the recent X-ray outburst. The power spectral analysis of the first observation reveals strong aperiodic X-ray variability of the source (~28%), as well as the presence of a QPO at ~82 mHz with fractional rms amplitude ~14% over the 2-60 keV energy range. Also apparent is the first harmonic of the QPO with the amplitude ~9%. As the X-ray flux increases, the source tends to become less variable, and the QPO frequency increases rapidly, from 82 mHz to 4 Hz, over the flux (2-50 keV) range of 1.73-5.75 x 10^{-8} ergs cm^{-2} s^{-1}. The amplitude of the fundamental component of the QPO varies little, while that of the harmonic follows a decreasing trend. The fundamental component strengthens toward high energies, while its harmonic weakens. Initially, the power spectrum is roughly flat at low frequencies and turns into a power law at high frequencies, with the QPO harmonic sitting roughly at the break. In later observations, however, the high-frequency portion of the continuum can actually be better described by a broken power law (as opposed to a simple power law). This effect becomes more apparent at higher energies. The overall amplitude of the continuum shows a similar energy dependence to that of the fundamental component of the QPO. Strong rapid X-ray variability, as well as hard energy spectrum, makes XTE J1550-564 a good black hole candidate. We compare its temporal properties with those of other black hole candidates.Comment: 12 pages, including 5 figures. To appear in ApJ Letters, vol. 512 (1999
    • 

    corecore