402 research outputs found
Fisher Renormalization for Logarithmic Corrections
For continuous phase transitions characterized by power-law divergences,
Fisher renormalization prescribes how to obtain the critical exponents for a
system under constraint from their ideal counterparts. In statistical
mechanics, such ideal behaviour at phase transitions is frequently modified by
multiplicative logarithmic corrections. Here, Fisher renormalization for the
exponents of these logarithms is developed in a general manner. As for the
leading exponents, Fisher renormalization at the logarithmic level is seen to
be involutory and the renormalized exponents obey the same scaling relations as
their ideal analogs. The scheme is tested in lattice animals and the Yang-Lee
problem at their upper critical dimensions, where predictions for logarithmic
corrections are made.Comment: 10 pages, no figures. Version 2 has added reference
Dynamic Fluctuation Phenomena in Double Membrane Films
Dynamics of double membrane films is investigated in the long-wavelength
limit including the overdamped squeezing mode. We demonstrate that thermal
fluctuations essentially modify the character of the mode due to its nonlinear
coupling to the transversal shear hydrodynamic mode. The corresponding Green
function acquires as a function of the frequency a cut along the imaginary
semi-axis. Fluctuations lead to increasing the attenuation of the squeezing
mode it becomes larger than the `bare' value.Comment: 7 pages, Revte
Absence of differential predation on rats by Malaysian Barn Owls in oil palm plantations
Barn Owls (Tyto alba javanica) have been widely introduced in Malaysian oil palm plantations to control rodent pests. However, their effectiveness in regulating rodent populations is unknown. We investigated whether Barn Owls selected prey with respect to size and sex classes based on data from 128 pellets of Barn Owls compared to 1292 live-trapped rats in an oil palm plantation in Malaysia. The birds mostly fed on Rattus rail as diardii, the most commonly trapped species. Body mass of prey consumed was predicted based on models derived from measurements from trapped rats. Sex of prey was determined by pelvic measurements with reference to those taken from specimens of known gender. There was no clear selection of prey by Barn Owls in relation to size or sex of prey, and no difference in the body mass of prey between the owls' breeding and nonbreeding seasons. The absence of differential predation in Barn Owls may partly explain the lack of dear evidence that they regulate rodent populations and thus act as successful biological control agents
Mise à jour des recommandations du GEFPICS pour l’évaluation du statut HER2 dans les cancers du sein en France
En Europe, les patientes atteintes d’un cancer du sein invasif susceptibles de recevoir un traitement ciblé anti-HER2 sont actuellement sélectionnées sur la base d’un test immunohistochimique (IHC). Les techniques d’hybridation in situ (HIS) doivent être utilisées pour l’évaluation des cas IHC ambigus (2+) et pour l’étalonnage de la technique IHC. Les patientes éligibles au traitement ciblant HER2 présentent un statut HER2 positif défini par un test IHC 3+ ou un test 2+ amplifié. Une détection correcte du statut HER2 est indispensable à une utilisation optimale des thérapeutiques ciblées puisque leur efficacité est limitée aux patientes surexprimant HER2. Il est capital que l’évaluation du statut HER2 soit optimisée et fiable. Ces recommandations du groupe d’étude des facteurs pronostiques IHC dans le cancer du sein (GEFPICS) détaillent et commentent les différentes étapes des techniques IHC et HIS, les contrôles utilisables et les règles générales de l’apprentissage de la lecture. Une fois acquis, ce savoir-faire doit être pérennisé par l’observation de règles de bonnes pratiques techniques (utilisation rigoureuse de témoins internes et externes et participation régulière à des programmes d’Assurance qualité [AQ])., Summary In Europe, patients who may benefit from an HER2 targeted drug are currently selected by immunohistochemistry (IHC). In situ hybridization (ISH) techniques should be used for complementary assessment of ambiguous 2+ IHC cases and for the calibration of the IHC technique. Eligibility to an HER2 target treatment is defined by an HER2 positive status being IHC test 3+ or 2+ amplified. Reliable detection of HER2 status is essential to the appropriate usage of HER2 targeted drugs because its specificity is limited to tumors overexpressing HER2. It is essential that the IHC evaluation of the HER2 status of a mammary carcinoma is optimized and reliable. This GEFPICS’ guidelines look over the different steps of the IHC technique, the controls and, the rules for interpretation. Once acquired, this knowledge must be perpetuated by the observation of rules of good technical practice (internal and external controls, quality assurance programs)
Coefficient shifts in geographical ecology: an empirical evaluation of spatial and non-spatial regression
Copyright © 2009 The Authors. Copyright © ECOGRAPHY 2009.A major focus of geographical ecology and macro ecology is to understand the causes of spatially structured ecological patterns. However, achieving this understanding can be complicated when using multiple regressions, because the relative importance of explanatory variables, as measured by regression coefficients, can shift depending on whether spatially explicit or non-spatial modelling is used. However, the extent to which coefficients may shift and why shifts occur are unclear. Here, we analyze the relationship between environmental predictors and the geographical distribution of species richness, body size, range size and abundance in 97 multi-factorial data sets. Our goal was to compare standardized partial regression coefficients of non-spatial ordinary least squares regressions (i.e. models fitted using ordinary least squares without taking autocorrelation into account; “OLS models” hereafter) and eight spatial methods to evaluate the frequency of coefficient shifts and identify characteristics of data that might predict when shifts are likely. We generated three metrics of coefficient shifts and eight characteristics of the data sets as predictors of shifts. Typical of ecological data, spatial autocorrelation in the residuals of OLS models was found in most data sets. The spatial models varied in the extent to which they minimized residual spatial autocorrelation. Patterns of coefficient shifts also varied among methods and datasets, although the magnitudes of shifts tended to be small in all cases. We were unable to identify strong predictors of shifts, including the levels of autocorrelation in either explanatory variables or model residuals. Thus, changes in coefficients between spatial and non-spatial methods depend on the method used and are largely idiosyncratic, making it difficult to predict when or why shifts occur. We conclude that the ecological importance of regression coefficients cannot be evaluated with confidence irrespective of whether spatially explicit modelling is used or not. Researchers may have little choice but to be more explicit about the uncertainty of models and more cautious in their interpretation
Metabolomic Characterization of Ovarian Epithelial Carcinomas by HRMAS-NMR Spectroscopy
Objectives. The objectives of the present study are to determine if a metabolomic study by HRMAS-NMR can (i) discriminate between different histological types of epithelial ovarian carcinomas and healthy ovarian tissue, (ii) generate statistical models capable of classifying borderline tumors and (iii) establish a potential relationship with patient's survival or response to chemotherapy. Methods. 36 human epithelial ovarian tumor biopsies and 3 healthy ovarian tissues were studied using 1H HRMAS NMR spectroscopy and multivariate statistical analysis. Results. The results presented in this study demonstrate that the three histological types of epithelial ovarian carcinomas present an effective metabolic pattern difference. Furthermore, a metabolic signature specific of serous (N-acetyl-aspartate) and mucinous (N-acetyl-lysine) carcinomas was found. The statistical models generated in this study are able to predict borderline tumors characterized by an intermediate metabolic pattern similar to the normal ovarian tissue. Finally and importantly, the statistical model of serous carcinomas provided good predictions of both patient's survival rates and the patient's response to chemotherapy. Conclusions. Despite the small number of samples used in this study, the results indicate that metabolomic analysis of intact tissues by HRMAS-NMR is a promising technique which might be applicable to the therapeutic management of patients
Activity-based differentiation of pathologists’ workload in surgical pathology
Adequate budget control in pathology practice requires accurate allocation of resources. Any changes in types and numbers of specimens handled or protocols used will directly affect the pathologists’ workload and consequently the allocation of resources. The aim of the present study was to develop a model for measuring the pathologists’ workload that can take into account the changes mentioned above. The diagnostic process was analyzed and broken up into separate activities. The time needed to perform these activities was measured. Based on linear regression analysis, for each activity, the time needed was calculated as a function of the number of slides or blocks involved. The total pathologists’ time required for a range of specimens was calculated based on standard protocols and validated by comparing to actually measured workload. Cutting up, microscopic procedures and dictating turned out to be highly correlated to number of blocks and/or slides per specimen. Calculated workload per type of specimen was significantly correlated to the actually measured workload. Modeling pathologists’ workload based on formulas that calculate workload per type of specimen as a function of the number of blocks and slides provides a basis for a comprehensive, yet flexible, activity-based costing system for pathology
104. Le bleu de méthylène : un colorant sans danger et performant pour détecter les ganglions sentinelles en chirurgie mammaire
Evolutionary genetics of MHC class II beta genes in the brown hare, Lepus europaeus
The genes of the major histocompatibility complex (MHC) are attractive candidates for investigating the link between adaptive variation and individual fitness. High levels of diversity at the MHC are thought to be the result of parasite-mediated selection and there is growing evidence to support this theory. Most studies, however, target just a single gene within the MHC and infer any evidence of selection to be representative of the entire gene region. Here we present data from three MHC class II beta genes (DPB, DQB, and DRB) for brown hares in two geographic regions and compare them against previous results from a class II alpha-chain gene (DQA). We report moderate levels of diversity and high levels of population differentiation in the DQB and DRB genes (Na = 11, Dest = 0.071 and Na = 15, Dest = 0.409, respectively), but not for the DPB gene (Na = 4, Dest = 0.00). We also detected evidence of positive selection within the peptide binding region of the DQB and DRB genes (95% CI, ω > 1.0) but found no signature of selection for DPB. Mutation and recombination were both found to be important processes shaping the evolution of the class II genes. Our findings suggest that while diversifying selection is a significant contributor to the generally high levels of MHC diversity, it does not act in a uniform manner across the entire MHC class II region. The beta-chain genes that we have characterized provide a valuable set of MHC class II markers for future studies of the evolution of adaptive variation in Leporids
Exhaled 8-isoprostane in sarcoidosis: relation to superoxide anion production by bronchoalveolar lavage cells
- …
