100 research outputs found

    Control design of Modular Multilevel Converters in normal and AC fault conditions for HVDC grids

    Get PDF
    This paper describes a control design strategy of Modular Multilevel Converters (MMC) for High Voltage Direct Current (HVDC) applications to operate during normal and AC fault conditions. First, a steady state analysis of the converter is performed to identify the uses of the current components within the control strategy. Based on the initial stationary study, a complete converter control structure is proposed, which enables full control of the MMC internal energy during normal and AC fault conditions. A detailed design procedure is included for the current and energy regulators, in order to be able to ensure a dynamic response under any grid condition. Finally, theoretical developments are validated through simulation results by means of a detailed model in normal operation and during an AC voltage sag

    Development of competences while solving real industrial interdisciplinary problems: a successful cooperation with industry

    Get PDF
    The development of projects in industrial context constitutes an exceptional opportunity for engineering students to develop competences expected by the labour market. Therefore, the adoption of this type of interaction within engineering curricula is highly recommended, not only at the end of the degree, but also in the previous years. The main purpose of this paper is to present and analyse a Project-Based Learning (PBL) semester in which six teams of Industrial Engineering and Management (IEM) students integrate different areas of knowledge, while solving real problems of five companies, emphasizing the technical solutions developed by the students and the feedback provided by the companies. Students' feedback will be also addressed. The main outcomes of this study reveal that most of the technical solutions lie in areas of Lean applications and ergonomic improvement of workplaces. Companies were very pleased with the results of this type of University-Business Cooperation (UBC).This work was funded by COMPETE-POCI-01-0145-FEDER-007043 and FCT-UID-CEC-00319-2013info:eu-repo/semantics/publishedVersio

    The clinical impact of using complex molecular profiling strategies in routine oncology practice

    Get PDF
    Molecular profiling and functional assessment of signalling pathways of advanced solid tumours are becoming increasingly available. However, their clinical utility in guiding patients’ treatment remains unknown. Here, we assessed whether molecular profiling helps physicians in therapeutic decision making by analysing the molecular profiles of 1057 advanced cancer patient samples after failing at least one standard of care treatment using a combination of next-generation sequencing (NGS), immunohistochemistry (IHC) and other specific tests. The resulting information was interpreted and personalized treatments for each patient were suggested. Our data showed that NGS alone provided the oncologist with useful information in 10–50% of cases (depending on cancer type), whereas the addition of IHC/other tests increased extensively the usefulness of the information provided. Using internet surveys, we investigated how therapy recommendations influenced treatment choice of the oncologist. For patients who were still alive after the provision of the molecular information (76.8%), 60.4% of their oncologists followed report recommendations. Most treatment decisions (93.4%) were made based on the combination of NGS and IHC/other tests, and an approved drug- rather than clinical trial enrolment- was the main treatment choice. Most common reasons given by physicians to explain the non-adherence to recommendations were drug availability and cost, which remain barriers to personalised precision medicine. Finally, we observed that 27% of patients treated with the suggested therapies had an overall survival > 12 months. Our study demonstrates that the combination of NGS and IHC/other tests provides the most useful information in aiding treatment decisions by oncologists in routine clinical practice

    Global overview of the management of acute cholecystitis during the COVID-19 pandemic (CHOLECOVID study)

    Get PDF
    Background: This study provides a global overview of the management of patients with acute cholecystitis during the initial phase of the COVID-19 pandemic. Methods: CHOLECOVID is an international, multicentre, observational comparative study of patients admitted to hospital with acute cholecystitis during the COVID-19 pandemic. Data on management were collected for a 2-month study interval coincident with the WHO declaration of the SARS-CoV-2 pandemic and compared with an equivalent pre-pandemic time interval. Mediation analysis examined the influence of SARS-COV-2 infection on 30-day mortality. Results: This study collected data on 9783 patients with acute cholecystitis admitted to 247 hospitals across the world. The pandemic was associated with reduced availability of surgical workforce and operating facilities globally, a significant shift to worse severity of disease, and increased use of conservative management. There was a reduction (both absolute and proportionate) in the number of patients undergoing cholecystectomy from 3095 patients (56.2 per cent) pre-pandemic to 1998 patients (46.2 per cent) during the pandemic but there was no difference in 30-day all-cause mortality after cholecystectomy comparing the pre-pandemic interval with the pandemic (13 patients (0.4 per cent) pre-pandemic to 13 patients (0.6 per cent) pandemic; P = 0.355). In mediation analysis, an admission with acute cholecystitis during the pandemic was associated with a non-significant increased risk of death (OR 1.29, 95 per cent c.i. 0.93 to 1.79, P = 0.121). Conclusion: CHOLECOVID provides a unique overview of the treatment of patients with cholecystitis across the globe during the first months of the SARS-CoV-2 pandemic. The study highlights the need for system resilience in retention of elective surgical activity. Cholecystectomy was associated with a low risk of mortality and deferral of treatment results in an increase in avoidable morbidity that represents the non-COVID cost of this pandemic

    Establishment and characterization of a bladder cancer cell line with enhanced doxorubicin resistance by mevalonate pathway activation

    Get PDF
    Resistance to chemotherapy is a major problem in the treatment of urothelial bladder cancer. Several mechanisms have been identified in resistance to doxorubicin by analysis of resistant urothelial carcinoma (UC) cell lines, prominently activation of drug efflux pumps and diminished apoptosis. We have derived a new doxorubicin-resistant cell line from BFTC-905 UC cells, designated BFTC-905DOXO-II. A doxorubicin-responsive green fluorescent protein (GFP) reporter assay indicated that resistance in BFTC905-DOXO-II was not due to increased drug efflux pump activity, whereas caspase-3/7 activation was indeed diminished. Gene expression microarray analysis revealed changes in proapoptotic and antiapoptotic genes, but additionally induction of the mevalonate (cholesterol) biosynthetic pathway. Treatmentwithsimvastatin restored sensitivity of BFTC-905DOXO-II to doxorubicin to that of the parental cell line. Induction of the mevalonate pathway has been reported as a mechanism of chemoresistance in other cancers; this is the first observation in bladder cancer. Combinations of statins with doxorubicin-containing chemotherapy regimens may provide a therapeutic advantage in such case

    The effect of ambient temperature on the yield of a 3 MWp PV plant installed in Ecuador

    No full text
    The integration of photovoltaic power plants in the distribution or transmission level is already a reality. Usually, the location chosen for these power plants consider high solar irradiance, but the temperature could be a drawback. Thus, the aim of this paper is to show the effect of solar irradiance and ambient temperature on the power generation of a photovoltaic power plant. For this, a real photovoltaic power plant is chosen in the Ecuadorian line in South America. The results show that the active power is reduced around 0.1 to 0.3 p.u when the ambient temperature is higher than 25 Celsius degrees although the solar irradiance is high

    The Role of Renewable Energy System in Reshaping the Electrical Grid Scenario

    No full text
    Renewable Energy Systems have been in the spotlight of the academic and industrial research for more than two decades, thanks to the development of several fields related to the Electrical Engineering. More recently, with the increasing complexity of the individual renewable energy systems and the interconnection to the grid, the scientific panorama has been witnessing to a convergence of different topics, which span across several IEEE-IES thematic areas: power electronics, electrical machines, smart grids, energy storage, transportation electrification and aerospace. After a brief overview of the renewable energy technologies, this work deals with how the convergence of multiple technologies developed to provide marginal support to the grid has evolved into the foundation of the future utility grid and expanded to transportation sector. It will be shown how the design of a renewable energy system cannot prescind anymore from the electrical grid and from the ancillary services that are requested. Example of convergence are given for a smart transformer application and for a transportation application
    corecore