33 research outputs found

    Insights into the genetics of the Zhonghua 11 Resistance to Meloidogyne graminicola and its molecular determinism in rice

    Get PDF
    This research and HN were funded by the Consultative Group for International Agricultural Research Program on rice-agrifood systems (CRP-RICE, 2017–2022), the French National Institute for Sustainable Development (IRD–France), and the International Join Laboratory (LMI-Rice 2) in Vietnam. Funding for some parts of this work was also provided through an SFC ODA GCRF award via the University of St Andrews, United Kingdom. The James Hutton Institute receives funding from the Rural and Environment Science and Analytical Services Division of the Scottish Government.Meloidogyne graminicola is a widely spread nematode pest of rice that reduces crop yield up to 20% on average in Asia, with devastating consequences for local and global rice production. Due to the ban on many chemical nematicides and the recent changes in water management practices in rice agriculture, an even greater impact of M. graminicola can be expected in the future, stressing the demand for the development of new sustainable nematode management solutions. Recently, a source of resistance to M. graminicola was identified in the Oryza sativa japonica rice variety Zhonghua 11 (Zh11). In the present study, we examine the genetics of the Zh11 resistance to M. graminicola and provide new insights into its cellular and molecular mechanisms. The segregation of the resistance in F2 hybrid populations indicated that two dominant genes may be contributing to the resistance. The incompatible interaction of M. graminicola in Zh11 was distinguished by a lack of swelling of the root tips normally observed in compatible interactions. At the cellular level, the incompatible interaction was characterised by a rapid accumulation of reactive oxygen species in the vicinity of the nematodes, accompanied by extensive necrosis of neighbouring cells. The expression profiles of several genes involved in plant immunity were analysed at the early stages of infection during compatible (susceptible plant) and incompatible (resistant plant) interactions. Notably, the expression of OsAtg4 and OsAtg7, significantly increased in roots of resistant plants in parallel with the cell death response, suggesting that autophagy is activated and may contribute to the resistance-mediated hypersensitive response. Similarly, transcriptional regulation of genes involved in hormonal pathways in Zh11 indicated that salicylate signalling may be important in the resistance response towards M. graminicola. Finally, the nature of the resistance to M. graminicola and the potential exploitation of the Zh11 resistance for breeding are discussed.Publisher PDFPeer reviewe

    (Homo)glutathione Deficiency Impairs Root-knot Nematode Development in Medicago truncatula

    Get PDF
    Root-knot nematodes (RKN) are obligatory plant parasitic worms that establish and maintain an intimate relationship with their host plants. During a compatible interaction, RKN induce the redifferentiation of root cells into multinucleate and hypertrophied giant cells essential for nematode growth and reproduction. These metabolically active feeding cells constitute the exclusive source of nutrients for the nematode. Detailed analysis of glutathione (GSH) and homoglutathione (hGSH) metabolism demonstrated the importance of these compounds for the success of nematode infection in Medicago truncatula. We reported quantification of GSH and hGSH and gene expression analysis showing that (h)GSH metabolism in neoformed gall organs differs from that in uninfected roots. Depletion of (h)GSH content impaired nematode egg mass formation and modified the sex ratio. In addition, gene expression and metabolomic analyses showed a substantial modification of starch and γ-aminobutyrate metabolism and of malate and glucose content in (h)GSH-depleted galls. Interestingly, these modifications did not occur in (h)GSH-depleted roots. These various results suggest that (h)GSH have a key role in the regulation of giant cell metabolism. The discovery of these specific plant regulatory elements could lead to the development of new pest management strategies against nematodes

    Direct Identification of the Meloidogyne incognita Secretome Reveals Proteins with Host Cell Reprogramming Potential

    Get PDF
    The root knot nematode, Meloidogyne incognita, is an obligate parasite that causes significant damage to a broad range of host plants. Infection is associated with secretion of proteins surrounded by proliferating cells. Many parasites are known to secrete effectors that interfere with plant innate immunity, enabling infection to occur; they can also release pathogen-associated molecular patterns (PAMPs, e.g., flagellin) that trigger basal immunity through the nematode stylet into the plant cell. This leads to suppression of innate immunity and reprogramming of plant cells to form a feeding structure containing multinucleate giant cells. Effectors have generally been discovered using genetics or bioinformatics, but M. incognita is non-sexual and its genome sequence has not yet been reported. To partially overcome these limitations, we have used mass spectrometry to directly identify 486 proteins secreted by M. incognita. These proteins contain at least segmental sequence identity to those found in our 3 reference databases (published nematode proteins; unpublished M. incognita ESTs; published plant proteins). Several secreted proteins are homologous to plant proteins, which they may mimic, and they contain domains that suggest known effector functions (e.g., regulating the plant cell cycle or growth). Others have regulatory domains that could reprogram cells. Using in situ hybridization we observed that most secreted proteins were produced by the subventral glands, but we found that phasmids also secreted proteins. We annotated the functions of the secreted proteins and classified them according to roles they may play in the development of root knot disease. Our results show that parasite secretomes can be partially characterized without cognate genomic DNA sequence. We observed that the M. incognita secretome overlaps the reported secretome of mammalian parasitic nematodes (e.g., Brugia malayi), suggesting a common parasitic behavior and a possible conservation of function between metazoan parasites of plants and animals

    Nematode effectors and plant responses to infection

    No full text
    Genomic resources in Arabidopsis have made possible the discovery of plant genes that mediate the nematode infection process, particularly the complex process of root re-differentiation into either knots or cysts. The genomic DNA sequences of two root knot nematodes have been characterized and considerable sequence coverage of cDNA from several cyst nematodes is available. These resources have enabled the discovery of several nematode effectors that play roles in causing susceptibility. RNAi has been used to create Arabidopsis plants that are resistant to root knot or to cyst nematodes and this has been extended to make soybean resistant to the cyst nematode

    Meloidogyne graminicola : a major threat to rice agriculture

    No full text
    Taxonomy: Superkingdom Eukaryota; Kingdom Metazoa; Phylum Nematoda; Class Chromadorea; Order Tylenchida; Suborder Tylenchina; Infraorder Tylenchomorpha; Superfamily Tylenchoidea; Family Meloidogynidae; Subfamily Meloidogyninae; Genus Meloidogyne. Biology: Microscopic non-segmented roundworm. Plant pathogen; obligate sedentary endoparasitic root-knot nematode. Reproduction: facultative meiotic parthenogenetic species in which amphimixis can occur at a low frequency (c. 0.5%); relatively fast life cycle completed in 19-27 days on rice depending on the temperature range. Host range: Reported to infect over 100 plant species, including cereals and grass plants, as well as dicotyledonous plants. Main host: rice (Oryza sativa). Symptoms: Characteristic hook-shaped galls (root swellings), mainly formed at the root tips of infected plants. Alteration of the root vascular system causes disruption of water and nutrient transport, stunting, chlorosis and loss of vigour, resulting in poor growth and reproduction of the plants with substantial yield losses in crops. Disease control: Nematicides, chemical priming, constant immersion of rice in irrigated fields, crop rotation with resistant or non-host plants, use of nematode-free planting material. Some sources of resistance to Meloidogyne graminicola have been identified in African rice species (O. glaberrima and O. longistaminata), as well as in a few Asian rice cultivars. Agronomic importance: Major threat to rice agriculture, particularly in Asia. Adapted to flooded conditions, Meloidogyne graminicola causes problems in all types of rice agrosystems

    Study on rice rootknot nematode (Meloidogyne spp.) in Vietnam

    No full text
    International audienc
    corecore