7,117 research outputs found
Observations on Carcinonemertes (Nemertea: Carcinonemertidae) associated with the smooth pebble crab, Philyra laevis
The occurrence of a nemertine on the crab Philyra laevis, identified as a species of Carcinonemertes similar to C. carcinophila imminuta Humes, 1942, is recorded. The genus has not previously been reported from Australia. Notes are given on the larval, immature and adult stages
Distances from Surface Brightness Fluctuations
The practice of measuring galaxy distances from their spatial fluctuations in
surface brightness is now a decade old. While several past articles have
included some review material, this is the first intended as a comprehensive
review of the surface brightness fluctuation (SBF) method. The method is
conceptually quite simple, the basic idea being that nearby (but unresolved)
star clusters and galaxies appear "bumpy", while more distant ones appear
smooth. This is quantified via a measurement of the amplitude of the Poisson
fluctuations in the number of unresolved stars encompassed by a CCD pixel
(usually in an image of an elliptical galaxy). Here, we describe the technical
details and difficulties involved in making SBF measurements, discuss
theoretical and empirical calibrations of the method, and review the numerous
applications of the method from the ground and space, in the optical and
near-infrared. We include discussions of stellar population effects and the
"universality" of the SBF standard candle. A final section considers the future
of the method.Comment: Invited review article to appear in: `Post-Hipparcos Cosmic Candles',
A. Heck & F. Caputo (Eds), Kluwer Academic Publ., Dordrecht, in press. 22
pages, including 3 postscript figures; uses Kluwer's crckapb.sty LaTex macro
file, enclose
Basement structure and its influence on the structural configuration of the northern North Sea
The northern North Sea rift basin developed on a heterogeneous crust comprising structures inherited from the Caledonian orogeny and Devonian postorogenic extension. Integrating two-dimensional regional seismic reflection data and information from basement wells, we investigate the prerift structural configuration in the northern North Sea rift. Three seismic facies have been defined below the base rift surface: (1) relatively low-amplitude and low-frequency reflections, interpreted as pre-Caledonian metasediments, Caledonian nappes, and/or Devonian clastic sediments; (2) packages of high-amplitude dipping reflections (>500 ms thick), interpreted as basement shear zones; and (3) medium-amplitude and high-frequency reflections interpreted as less sheared crystalline basement of Proterozoic and Paleozoic (Caledonian) origin. Some zones of Seismic Facies 2 can be linked to onshore Devonian shear zones, whereas others are restricted to the offshore rift area. Interpreted offshore shear zones dip S, ESE, and WNW in contrast to W to NW dipping shear zones onshore West Norway. Our results indicate that Devonian strain and ductile deformation was distributed throughout the Caledonian orogenic belt from central South Norway to the Shetland Platform. Most of the Devonian basins related to this extension are, however, removed by erosion during subsequent exhumation. Basement shear zones reactivated during the rifting and locally control the location and geometry of rift depocenters, e.g., in the Stord and East Shetland basins. Prerift structures with present-day dips >15° were reactivated, although some of the basement shear zones are displaced by rift faults regardless of their orientation relative to rift extension direction
Nudges and other moral technologies in the context of power: Assigning and accepting responsibility
Strawson argues that we should understand moral responsibility in terms of our practices of holding responsible and taking responsibility. The former covers what is commonly referred to as backward-looking responsibility , while the latter covers what is commonly referred to as forward-looking responsibility . We consider new technologies and interventions that facilitate assignment of responsibility. Assigning responsibility is best understood as the second- or third-personal analogue of taking responsibility. It establishes forward-looking responsibility. But unlike taking responsibility, it establishes forward-looking responsibility in someone else. When such assignments are accepted, they function in such a way that those to whom responsibility has been assigned face the same obligations and are susceptible to the same reactive attitudes as someone who takes responsibility. One family of interventions interests us in particular: nudges. We contend that many instances of nudging tacitly assign responsibility to nudgees for actions, values, and relationships that they might not otherwise have taken responsibility for. To the extent that nudgees tacitly accept such assignments, they become responsible for upholding norms that would otherwise have fallen under the purview of other actors. While this may be empowering in some cases, it can also function in such a way that it burdens people with more responsibility that they can (reasonably be expected to) manage
Recommended from our members
The alignment of the second velocity moment tensor in galaxies
We show that provided the principal axes of the second velocity moment tensor of a stellar population are generally unequal and are oriented perpendicular to a set of orthogonal surfaces at each point, then those surfaces must be confocal quadric surfaces and the potential must be separable or Stäckel. This is true under the mild assumption that the even part of the distribution function (DF) is invariant under time reversal vi → −vi of each velocity component. In particular, if the second velocity moment tensor is everywhere exactly aligned in spherical polar coordinates, then the potential must be of separable or Stäckel form (excepting degenerate cases where two or more of the semiaxes of ellipsoid are everywhere the same). The theorem also has restrictive consequences for alignment in cylindrical polar coordinates, which is used in the popular Jeans Anisotropic Models (JAM) of Cappellari. We analyse data on the radial velocities and proper motions of a sample of ∼7300 stars in the stellar halo of the Milky Way. We provide the distributions of the tilt angles or misalignments from both the spherical polar coordinate systems. We show that in this sample the misalignment is always small (usually within 3°) for Galactocentric radii between ∼6 and ∼11 kpc. The velocity anisotropy is very radially biased (β ≈ 0.7), and almost invariant across the volume in our study. Finally, we construct a triaxial stellar halo in a triaxial NFW dark matter halo using a made-to-measure method. Despite the triaxiality of the potential, the velocity ellipsoid of the stellar halo is nearly spherically aligned within ∼6° for large regions of space, particularly outside the scale radius of the stellar halo. We conclude that the second velocity moment ellipsoid can be close to spherically aligned for a much wider class of potentials than the strong constraints that arise from exact alignment might suggest
Internal transport barriers in the National Spherical Torus Experiment
In the National Spherical Torus Experiment [M. Ono , Nucl. Fusion 41, 1435 (2001)], internal transport barriers (ITBs) are observed in reversed (negative) shear discharges where diffusivities for electron and ion thermal channels and momentum are reduced. While neutral beam heating can produce ITBs in both electron and ion channels, high harmonic fast wave heating can also produce electron ITBs (e-ITBs) under reversed magnetic shear conditions without momentum input. Interestingly, the location of the e-ITB does not necessarily match that of the ion ITB (i-ITB). The e-ITB location correlates best with the magnetic shear minima location determined by motional Stark effect constrained equilibria, whereas the i-ITB location better correlates with the location of maximum ExB shearing rate. Measured electron temperature gradients in the e-ITB can exceed critical gradients for the onset of electron thermal gradient microinstabilities calculated by linear gyrokinetic codes. A high-k microwave scattering diagnostic shows locally reduced density fluctuations at wave numbers characteristic of electron turbulence for discharges with strongly negative magnetic shear versus weakly negative or positive magnetic shear. Reductions in fluctuation amplitude are found to be correlated with the local value of magnetic shear. These results are consistent with nonlinear gyrokinetic simulations predicting a reduction in electron turbulence under negative magnetic shear conditions despite exceeding critical gradients.X1128sciescopu
Semantics and Proof Theory of the Epsilon Calculus
The epsilon operator is a term-forming operator which replaces quantifiers in
ordinary predicate logic. The application of this undervalued formalism has
been hampered by the absence of well-behaved proof systems on the one hand, and
accessible presentations of its theory on the other. One significant early
result for the original axiomatic proof system for the epsilon-calculus is the
first epsilon theorem, for which a proof is sketched. The system itself is
discussed, also relative to possible semantic interpretations. The problems
facing the development of proof-theoretically well-behaved systems are
outlined.Comment: arXiv admin note: substantial text overlap with arXiv:1411.362
Rmi1 stimulates decatenation of double Holliday junctions during dissolution by Sgs1-Top3
double Holliday junction (dHJ) is a central intermediate of homologous recombination that can be processed to yield crossover or non-crossover recombination products. To preserve genomic integrity, cells possess mechanisms to avoid crossing over. We show that Saccharomyces cerevisiae Sgs1 and Top3 proteins are sufficient to migrate and disentangle a dHJ to produce exclusively non-crossover recombination products, in a reaction termed "dissolution." We show that Rmi1 stimulates dHJ dissolution at low Sgs1-Top3 protein concentrations, although it has no effect on the initial rate of Holliday junction (HJ) migration. Rmi1 serves to stimulate DNA decatenation, removing the last linkages between the repaired and template DNA molecules. Dissolution of a dHJ is a highly efficient and concerted alternative to nucleolytic resolution that prevents crossing over of chromosomes during recombinational DNA repair in mitotic cells and thereby contributes to genomic integrity
Behavioural syndrome in a solitary predator is independent of body size and growth rate.
Models explaining behavioural syndromes often focus on state-dependency, linking behavioural variation to individual differences in other phenotypic features. Empirical studies are, however, rare. Here, we tested for a size and growth-dependent stable behavioural syndrome in the juvenile-stages of a solitary apex predator (pike, Esox lucius), shown as repeatable foraging behaviour across risk. Pike swimming activity, latency to prey attack, number of successful and unsuccessful prey attacks was measured during the presence/absence of visual contact with a competitor or predator. Foraging behaviour across risks was considered an appropriate indicator of boldness in this solitary predator where a trade-off between foraging behaviour and threat avoidance has been reported. Support was found for a behavioural syndrome, where the rank order differences in the foraging behaviour between individuals were maintained across time and risk situation. However, individual behaviour was independent of body size and growth in conditions of high food availability, showing no evidence to support the state-dependent personality hypothesis. The importance of a combination of spatial and temporal environmental variation for generating growth differences is highlighted
Reduced Diversity and High Sponge Abundance on a Sedimented Indo-Pacific Reef System: Implications for Future Changes in Environmental Quality
Although coral reef health across the globe is declining as a result of anthropogenic impacts, relatively little is known of how environmental variability influences reef organisms other than corals and fish. Sponges are an important component of coral reef fauna that perform many important functional roles and changes in their abundance and diversity as a result of environmental change has the potential to affect overall reef ecosystem functioning. In this study, we examined patterns of sponge biodiversity and abundance across a range of environments to assess the potential key drivers of differences in benthic community structure. We found that sponge assemblages were significantly different across the study sites, but were dominated by one species Lamellodysidea herbacea (42% of all sponges patches recorded) and that the differential rate of sediment deposition was the most important variable driving differences in abundance patterns. Lamellodysidea herbacea abundance was positively associated with sedimentation rates, while total sponge abundance excluding Lamellodysidea herbacea was negatively associated with rates of sedimentation. Overall variation in sponge assemblage composition was correlated with a number of variables although each variable explained only a small amount of the overall variation. Although sponge abundance remained similar across environments, diversity was negatively affected by sedimentation, with the most sedimented sites being dominated by a single sponge species. Our study shows how some sponge species are able to tolerate high levels of sediment and that any transition of coral reefs to more sedimented states may result in a shift to a low diversity sponge dominated system, which is likely to have subsequent effects on ecosystem functioning. © 2014 Powell et al
- …