4,521 research outputs found

    Modelling the impact of liner shipping network perturbations on container cargo routing: Southeast Asia to Europe application

    Get PDF
    Understanding how container routing stands to be impacted by different scenarios of liner shipping network perturbations such as natural disasters or new major infrastructure developments is of key importance for decision-making in the liner shipping industry. The variety of actors and processes within modern supply chains and the complexity of their relationships have previously led to the development of simulation-based models, whose application has been largely compromised by their dependency on extensive and often confidential sets of data. This study proposes the application of optimisation techniques less dependent on complex data sets in order to develop a quantitative framework to assess the impacts of disruptive events on liner shipping networks. We provide a categorization of liner network perturbations, differentiating between systemic and external and formulate a container assignment model that minimises routing costs extending previous implementations to allow feasible solutions when routing capacity is reduced below transport demand. We develop a base case network for the Southeast Asia to Europe liner shipping trade and review of accidents related to port disruptions for two scenarios of seismic and political conflict hazards. Numerical results identify alternative routing paths and costs in the aftermath of port disruptions scenarios and suggest higher vulnerability of intra-regional connectivity

    Modelling the impact of liner shipping network perturbations on container cargo routing: Southeast Asia to Europe application

    Get PDF
    Understanding how container routing stands to be impacted by different scenarios of liner shipping network perturbations such as natural disasters or new major infrastructure developments is of key importance for decision-making in the liner shipping industry. The variety of actors and processes within modern supply chains and the complexity of their relationships have previously led to the development of simulation-based models, whose application has been largely compromised by their dependency on extensive and often confidential sets of data. This study proposes the application of optimisation techniques less dependent on complex data sets in order to develop a quantitative framework to assess the impacts of disruptive events on liner shipping networks. We provide a categorization of liner network perturbations, differentiating between systemic and external and formulate a container assignment model that minimises routing costs extending previous implementations to allow feasible solutions when routing capacity is reduced below transport demand. We develop a base case network for the Southeast Asia to Europe liner shipping trade and review of accidents related to port disruptions for two scenarios of seismic and political conflict hazards. Numerical results identify alternative routing paths and costs in the aftermath of port disruptions scenarios and suggest higher vulnerability of intra-regional connectivity

    The Tilt of the Fundamental Plane: Three-quarters Structural Nonhomology, One-quarter Stellar Population

    Full text link
    The variation of the mass-to-light ratios M/L of early type galaxies as function of their luminosities L is investigated. It is shown that the tilt beta=0.27 (in the B--band) of the fundamental plane relation M/L ~ L^{beta} can be understood as a combination of two effects: about one-quarter (i.e. dbeta =0.07) is a result of systematic variations of the stellar population properties with increasing luminosity. The remaining three-quarters (i.e. dbeta =0.2) can be completely attributed to nonhomology effects that lead to a systematic change of the surface brightness profiles with increasing luminosity. Consequently, the observed tilt in the K-band (beta=0.17) where stellar population effects are negligible, is explained by nonhomology effects alone. After correcting for nonhomology, the mean value of the mass-to-light ratio of elliptical galaxies (M/L_B) is 7.1+-2.8 (1 sigma scatter).Comment: 8 pages, 3 figures, ApJL, 600, 39, minor changes made to match the published versio

    Antiproton constraints on dark matter annihilations from internal electroweak bremsstrahlung

    Full text link
    If the dark matter particle is a Majorana fermion, annihilations into two fermions and one gauge boson could have, for some choices of the parameters of the model, a non-negligible cross-section. Using a toy model of leptophilic dark matter, we calculate the constraints on the annihilation cross-section into two electrons and one weak gauge boson from the PAMELA measurements of the cosmic antiproton-to-proton flux ratio. Furthermore, we calculate the maximal astrophysical boost factor allowed in the Milky Way under the assumption that the leptophilic dark matter particle is the dominant component of dark matter in our Universe. These constraints constitute very conservative estimates on the boost factor for more realistic models where the dark matter particle also couples to quarks and weak gauge bosons, such as the lightest neutralino which we also analyze for some concrete benchmark points. The limits on the astrophysical boost factors presented here could be used to evaluate the prospects to detect a gamma-ray signal from dark matter annihilations at currently operating IACTs as well as in the projected CTA.Comment: 32 pages; 13 figure

    The Spitzer/IRAC view of black hole - bulge scaling relations

    Full text link
    We present a mid-IR investigation of the scaling relations between supermassive black hole masses (MBH) and the structural parameters of the host spheroids in local galaxies. The work is based on two-dimensional bulge-disk decompositions of Spitzer/IRAC 3.6 um images of 57 galaxies with MBH estimates. Our estimates of effective radii (Re) and surface brightnesses, combined with velocity dispersions (sigma) from the literature, define a FP relation consistent with previous determinations but doubling the observed range in Re. None of our galaxies is an outlier of the FP, demonstrating the accuracy of our bulge-disk decomposition which also allows us to independently identify pseudobulges in our sample. We calibrate M/L at 3.6 um by using the tight Mdyn-Lbul relation (~0.1 dex of rms) and find that no color corrections are required to estimate the stellar mass. The 3.6 um luminosity is thus the best tracer of Mstar yet studied. We then explore the connection between MBH and bulge structural parameters (luminosity, mass, effective radius). We find tight correlations of MBH with both 3.6 um bulge luminosity and dynamical mass (MBH/Mdyn~1/1000), with rms of ~0.35 dex, similar to the MBH-sigma relation. Our results are consistent with previous determinations at shorter wavelengths. By using our calibrated M/L, we rescale MBH-Lbul to obtain the MBH-Mstar relation, which can be used as the local reference for high-z studies which probe the cosmic evolution of MBH-galaxy relations and where the stellar mass is inferred directly from luminosity measurements. The analysis of pseudobulges shows that 4 out of 9 lie on the scaling relations within the observed scatter, while those with small MBH are significantly displaced. We explore the different origins for such behavior, while considering the possibility of nuclear morphological components not reproduced by our two-dimensional decomposition.Comment: 30 pages, 8 figures, 5 tables. Accepted for pubblication in MNRAS. Minor changes after proof correctio

    Complete diagrammatics of the single ring theorem

    Full text link
    Using diagrammatic techniques, we provide explicit functional relations between the cumulant generating functions for the biunitarily invariant ensembles in the limit of large size of matrices. The formalism allows to map two distinct areas of free random variables: Hermitian positive definite operators and non-normal R-diagonal operators. We also rederive the Haagerup-Larsen theorem and show how its recent extension to the eigenvector correlation function appears naturally within this approach.Comment: 18 pages, 6 figures, version accepted for publicatio

    Increased risk of HPV-associated genital cancers in men and women as a consequence of pre-invasive disease

    Get PDF
    To assess the excess risk of HPVā€associated cancer (HPVaC) in two atā€risk groups ā€“ women with a previous diagnosis of high grade cervical intraepithelial neoplasia (CIN3) and both men and women treated for nonā€cervical preā€invasive anoā€genital disease. All CIN3 cases diagnosed in 1989ā€2015 in Scotland were extracted from the Scottish cancer registry (SMR06). All cases of preā€invasive penile, anal, vulval, and vaginal disease diagnosed in 1990ā€2015 were identified within the NHS pathology databases in the two largest NHS health boards in Scotland. Both were linked to SMR06 to extract subsequent incidence of HPVaC following the diagnosis of CIN3 or preā€invasive disease. Standardised incidence ratios were calculated for the risk of acquiring HPVaC for the two atā€risk groups compared with the general Scottish population. Among 69714 females in Scotland diagnosed with CIN3 (890360.9 personā€years), 179 developed nonā€cervical HPVaC. CIN3 cases were at 3.2ā€fold (95% CI: 2.7 to 3.7) increased risk of developing nonā€cervical HPVaC, compared to the general female population. Among 1235 patients diagnosed with nonā€cervical preā€invasive disease (9667.4 personā€years), 47 developed HPVaC. Individuals with nonā€cervical preā€invasive disease had a substantially increased risk of developing HPVaC ā€ 15.5ā€fold (95% CI: 11.1 to 21.1) increased risk for females and 28ā€fold (11.3 to 57.7) increased risk for males. We report a significant additional risk of HPVā€associated cancer in those have been diagnosed with preā€invasive HPVā€associated lesions including but not confined to the cervix. Uncovering the natural history of preā€invasive disease has potential for determining screening, prevention and treatment

    Local stability of self-gravitating fluid disks made of two components in relative motion

    Get PDF
    Context. We consider a simple self-gravitating disk, made of two fluid components characterized by different effective thermal speeds and interacting with one another only through gravity; two-component models of this type have often been considered in order to estimate the impact of the cold interstellar medium on gravitational instabilities in star-dominated galaxy disks. Aims. This simple model allows us to produce a unified description of instabilities in non-viscous self-gravitating disks, some originating from Jeans collapse, and others from the relative motion between the two components. In particular, the model suggests that the small streaming velocity between the two components associated with the so-called asymmetric drift may be the origin of instability for suitable non-axisymmetric perturbations. Methods. The result is obtained by examining the properties of a local, linear dispersion relation for tightly wound density waves in such two-component model. The parameters characterizing the equilibrium model and the related dispersion relation allow us to recover as natural limits the cases, known in the literature, in which the relative drift between the two components is ignored. Results. Dynamically, the instability is similar to (although gentler than) that known to affect counter-rotating disks. However, in contrast to the instability induced by counter-rotation, which is a relatively rare phenomenon, the mechanism discussed in this paper is likely to be rather common in nature. Conclusions. We briefly indicate some consequences of the instability on the evolution of galaxy disks and possible applications to other astrophysical systems, in particular to protostellar disks and accretion disks.Comment: 9 pages, 5 figures, Astronomy & Astrophysics, in pres

    Evidence for a Long-Standing Top-Heavy IMF in the Central Parsec of the Galaxy

    Full text link
    We classify 329 late-type giants within 1 parsec of Sgr A*, using the adaptive optics integral field spectrometer SINFONI on the VLT. These observations represent the deepest spectroscopic data set so far obtained for the Galactic Center, reaching a 50% completeness threshold at the approximate magnitude of the helium-burning red clump (Ks ~ 15.5 mag.). Combining our spectroscopic results with NaCo H and Ks photometry, we construct an observed Hertzsprung-Russell diagram, which we quantitatively compare to theoretical distributions of various star formation histories of the inner Galaxy, using a chi-squared analysis. Our best-fit model corresponds to continuous star formation over the last 12 Gyr with a top-heavy initial mass function (IMF). The similarity of this IMF to the IMF observed for the most recent epoch of star formation is intriguing and perhaps suggests a connection between recent star formation and the stars formed throughout the history of the Galactic Center.Comment: 18 pages, 10 figures, Accepted to ApJ: 15 July 200
    • ā€¦
    corecore