2,567 research outputs found

    Evidence for a non-universal stellar initial mass function in low-redshift high-density early-type galaxies

    Full text link
    We determine an absolute calibration of stellar mass-to-light ratios for the densest \simeq 3% of early-type galaxies in the local universe (redshift z\simeq 0.08) from SDSS DR7. This sample of \sim 4000 galaxies has, assuming a Chabrier IMF, effective stellar surface densities, Sigma_e > 2500 M_sun/pc^2, stellar population synthesis (SPS) stellar masses log_10(M_sps/M_sun)<10.8, and aperture velocity dispersions of sigma_ap=168^{+37}_{-34} km/s (68% range). In contrast to typical early-type galaxies, we show that these dense early-type galaxies follow the virial fundamental plane, which suggests that mass-follows-light. With the additional assumption that any dark matter does not follow the light, the dynamical masses of dense galaxies provide a direct measurement of stellar masses. Our dynamical masses (M_dyn), obtained from the spherical Jeans equations, are only weakly sensitive to the choice of anisotropy (\beta) due to the relatively large aperture of the SDSS fiber for these galaxies: R_ap \simeq 1.5 R_e. Assuming isotropic orbits (\beta=0) we find a median log_{10} (M_dyn/M_sps) = 0.233 \pm 0.003, consistent with a Salpeter IMF, while more bottom heavy IMFs and standard Milky-Way IMFs are strongly disfavored. Our results are consistent with, but do not require, a dependence of the IMF on dynamical mass or velocity dispersion. We find evidence for a color dependence to the IMF such that redder galaxies have heavier IMFs with M_dyn/M_sps \propto (g-r)^{1.13\pm0.09}. This may reflect a more fundamental dependence of the IMF on the age or metallicity of a stellar population, or the density at which the stars formed.Comment: 5 pages, 6 figures, accepted to MNRAS Letters, minor changes to previous versio

    Prescription drug monitoring program data tracking of opioid addiction treatment outcomes in integrated dual diagnosis care involving injectable naltrexone

    Get PDF
    BACKGROUND AND OBJECTIVES: Fourfold increases in opioid prescribing and dispensations over 2 decades in the U.S. has paralleled increases in opioid addictions and overdoses, requiring new preventative, diagnostic, and treatment strategies. This study examines Prescription Drug Monitoring Program (PDMP) tracking as a novel measure of opioid addiction treatment outcomes in a university-affiliated integrated mental health-addiction treatment clinic. METHODS: Repeated measure parametrics examined PDMP and urine drug screening (UDS) data before and after first injection for all patients (N = 68) who received at least one long-acting naltrexone injection (380 mg/IM) according to diagnostic groupings of having either (i) alcohol (control); (ii) opioid; or (iii) combined alcohol and opioid use disorders. RESULTS: There were no group differences post-injection in treatment days, injections delivered, or treatment service encounters. UDS and PDMP measures of opioid exposures were greater in opioid compared to alcohol-only patients. Post-first injection, UDS's positive for opioids declined (p < .05) along with PDMP measures of opioid prescriptions (p < .001), doses (p < .01), types (p < .001), numbers of dispensing prescribers (p < .001) and pharmacies (p < .001). Opioid patients without alcohol disorders showed the best outcomes with 50% to 80% reductions in PDMP-measures of opioids, down to levels of alcohol-only patients. CONCLUSIONS: This study shows PDMP utility for measuring opioid addiction treatment outcomes, supporting the routine use of PDMPs in clinical and research settings. SCIENTIFIC SIGNIFICANCE: These findings demonstrate that opioid addiction in patients with complex addictions and mental illnesses comorbidities can show effective treatment responses as measured by PDMP tracking of decreases in opioid prescriptions to those patients. (Am J Addict 2016;25:557-564)

    Successful use of axonal transport for drug delivery by synthetic molecular vehicles

    Get PDF
    We report the use of axonal transport to achieve intraneural drug delivery. We constructed a novel tripartite complex of an axonal transport facilitator conjugated to a linker molecule bearing up to a hundred reversibly attached drug molecules. The complex efficiently enters nerve terminals after intramuscular or intradermal administration and travels within axonal processes to neuron cell bodies. The tripartite agent provided 100-fold amplification of saturable neural uptake events, delivering multiple drug molecules per complex. _In vivo_, analgesic drug delivery to systemic and to non-targeted neural tissues was greatly reduced compared to existing routes of administration, thus exemplifying the possibility of specific nerve root targeting and effectively increasing the potency of the candidate drug gabapentin 300-fold relative to oral administration

    The effect of Warm Dark Matter on galaxy properties: constraints from the stellar mass function and the Tully-Fisher relation

    Full text link
    In this paper we combine high resolution N-body simulations with a semi analytical model of galaxy formation to study the effects of a possible Warm Dark Matter (WDM) component on the observable properties of galaxies. We compare three WDM models with a dark matter mass of 0.5, 0.75 and 2.0 keV, with the standard Cold Dark Matter case. For a fixed set of parameters describing the baryonic physics the WDM models predict less galaxies at low (stellar) masses, as expected due to the suppression of power on small scales, while no substantial difference is found at the high mass end. However these differences in the stellar mass function, vanish when different set of parameters are used to describe the (largely unknown) galaxy formation processes. We show that is possible to break this degeneracy between DM properties and the parameterization of baryonic physics by combining observations on the stellar mass function with the Tully-Fisher relation (the relation between stellar mass and the rotation velocity at large galactic radii as probed by resolved HI rotation curves). WDM models with a too warm candidate (m<0.75 keV) cannot simultaneously reproduce the stellar mass function and the Tully-Fisher relation. We conclude that accurate measurements of the galaxy stellar mass function and the link between galaxies and dark matter haloes down to the very low-mass end can give very tight constraints on the nature of DM candidates.Comment: 8 pages, 5 figures, minor changes, accepted for publication on Ap

    Optimal operation of the Western Link embedded HVDC connection

    Get PDF
    The Western Link is a new point-to-point embedded HVDC connection due to be commissioned in Great Britain in 2018. This paper investigates the optimal loading of the Western Link with respect to the wider transmission system. The work modelled a representation of behaviour of the wholesale market and system operator actions using mathematical optimisation in the form of an economic dispatch followed by an AC optimal power flow. A range of different system cases was studied using: a representative high voltage transmission network of Great Britain; system planned outages on AC circuits in parallel with the Western Link; system contingencies; and two possible post-contingency Western Link loading rules. It was concluded from the cases studied that the optimal dispatch of power on the Western Link is an affine function of power flow in the parallel AC circuits, modulated by system planned outages and the thermal rating of the Western Link

    Selective breeding for high alcohol consumption and response to nicotine: locomotor activity, dopaminergic in the mesolimbic system, and innate genetic differences in male and female alcohol-preferring, non-preferring, and replicate lines of high-alcohol drinking and low-alcohol drinking rats

    Get PDF
    Rationale There is evidence for a common genetic link between alcohol and nicotine dependence. Rodents selectively bred for high alcohol consumption/responsivity are also more likely to self-administer nicotine than controls. Objectives The experiments examined the response to systemic nicotine, the effects of nicotine within the drug reward pathway, and innate expression of nicotine-related genes in a brain region regulating drug reward/self-administration in multiple lines of rats selectively bred for high and low alcohol consumption. Methods The experiments examined the effects of systemic administration of nicotine on locomotor activity, the effects of nicotine administered directly into the (posterior ventral tegmental area; pVTA) on dopamine (DA) release in the nucleus accumbens shell (AcbSh), and innate mRNA levels of acetylcholine receptor genes in the pVTA were determined in 6 selectively bred high/low alcohol consuming and Wistar rat lines. Results The high alcohol-consuming rat lines had greater nicotine-induced locomotor activity compared to low alcohol-consuming rat lines. Microinjections of nicotine into the pVTA resulted in DA release in the AcbSh with the dose response curves for high alcohol-consuming rats shifted leftward and upward. Genetic analysis of the pVTA indicated P rats expressed higher levels of α2 and β4. Conclusion Selective breeding for high alcohol preference resulted in a genetically divergent behavioral and neurobiological sensitivity to nicotine. The observed behavioral and neurochemical differences between the rat lines would predict an increased likelihood of nicotine reinforcement. The data support the hypothesis of a common genetic basis for drug addiction and identifies potential receptor targets

    PyATMOS: A Scalable Grid of Hypothetical Planetary Atmospheres

    Full text link
    Cloud computing offers an opportunity to run compute-resource intensive climate models at scale by parallelising model runs such that datasets useful to the exoplanet community can be produced efficiently. To better understand the statistical distributions and properties of potentially habitable planetary atmospheres we implemented a parallelised climate modelling tool to scan a range of hypothetical atmospheres.Starting with a modern day Earth atmosphere, we iteratively and incrementally simulated a range of atmospheres to infer the landscape of the multi-parameter space, such as the abundances of biological mediated gases (\ce{O2}, \ce{CO2}, \ce{H2O}, \ce{CH4}, \ce{H2}, and \ce{N2}) that would yield `steady state' planetary atmospheres on Earth-like planets around solar-type stars. Our current datasets comprises of \numatmospheres simulated models of exoplanet atmospheres and is available publicly on the NASA Exoplanet Archive. Our scalable approach of analysing atmospheres could also help interpret future observations of planetary atmospheres by providing estimates of atmospheric gas fluxes and temperatures as a function of altitude. Such data could enable high-throughput first-order assessment of the potential habitability of exoplanetary surfaces and sepcan be a learning dataset for machine learning applications in the atmospheric and exoplanet science domain.Comment: 9 pages, 6 figure

    Gravitational Instabilities, Chondrule Formation, and the FU Orionis Phenomenon

    Full text link
    Using analytic arguments and numerical simulations, we examine whether chondrule formation and the FU Orionis phenomenon can be caused by the burst-like onset of gravitational instabilities (GIs) in dead zones. At least two scenarios for bursting dead zones can work, in principle. If the disk is on the verge of fragmention, GI activation near r4r\sim4 to 5 AU can produce chondrule-forming shocks, at least under extreme conditions. Mass fluxes are also high enough during the onset of GIs to suggest that the outburst is related to an FU Orionis phenomenon. This situation is demonstrated by numerical simulations. In contrast, as supported by analytic arguments, if the burst takes place close to r1r\sim1 AU, then even low pitch angle spiral waves can create chondrule-producing shocks and outbursts. We also study the stability of the massive disks in our simulations against fragmentation and find that although disk evolution is sensitive to changes in opacity, the disks we study do not fragment, even at high resolution and even for extreme assumptions.Comment: To appear in Ap

    The baryonic Tully-Fisher relation and galactic outflows

    Full text link
    Most of the baryons in the Universe are not in the form of stars and cold gas in galaxies. Galactic outflows driven by supernovae/stellar winds are the leading mechanism for explaining this fact. The scaling relation between galaxy mass and outer rotation velocity (also known as the baryonic Tully-Fisher relation, BTF) has recently been used as evidence against this viewpoint. We use a LCDM based semi-analytic disk galaxy formation model to investigate these claims. In our model, galaxies with less efficient star formation and higher gas fractions are more efficient at ejecting gas from galaxies. This is due to the fact that galaxies with less efficient star formation and higher gas fractions tend to live in dark matter haloes with lower circular velocities, from which less energy is required to escape the potential well. In our model the intrinsic scatter in the BTF is 0.15 dex, and mostly reflects scatter in dark halo concentration. The observed scatter, equal to 0.24 dex, is dominated by measurement errors. The best estimate for the intrinsic scatter is that it is less than 0.15 dex, and thus our LCDM based model (which does not include all possible sources of scatter) is only just consistent with this. In our model, gas rich galaxies, at fixed virial velocity (V_vir), with lower stellar masses have lower baryonic masses. This is consistent with the expectation that galaxies with lower stellar masses have had less energy available to drive an outflow. However, when the outer rotation velocity (V_flat) is used the correlation has the opposite sign, with a slope in agreement with observations. This is due to scatter in the relation between V_flat and V_vir. In summary, contrary to some previous claims, we show that basic features of the BTF are consistent with a LCDM based model in which the low efficiency of galaxy formation is determined by galactic outflows.Comment: 7 pages, 4 figures, accepted to MNRA
    corecore