83 research outputs found
The global response of relativistic radiation belt electrons to the January 1997 magnetic cloud
In January 1997 a large fleet of NASA and US military satellites provided the most complete observations to date of the changes in \u3e2 MeV electrons during a geomagnetic storm. Observations at geosynchronous orbit revealed a somewhat unusual two-peaked enhancement in relativistic electron fluxes [ Reeves et al., 1998]. In the heart of the radiation belts at L ≈ 4, however, there was a single enhancement followed by a gradual decay. Radial profiles from the POLAR and GPS satellites revealed three distinct phases. (1) In the acceleration phase electron fluxes increased simultaneously at L ≈ 4–6. (2) During the passage of the cloud the radiation belts were shifted radially outward and then relaxed earthward. (3) For several days after the passage of the cloud the radial gradient of the fluxes flattened, increasing the fluxes at higher L-shells. These observations provide evidence that the acceleration of relativistic electrons takes place within the radiation belts and is rapid. Both magnetospheric compression and radial diffusion can cause a redistribution of electron fluxes within the magnetosphere that make the event profiles appear quite different when viewed at different L-shells
Recurrent geomagnetic storms and relativistic electron enhancements in the outer magnetosphere: ISTP coordinated measurements
New, coordinated measurements from the International Solar-Terrestrial Physics (ISTP) constellation of spacecraft are presented to show the causes and effects of recurrent geomagnetic activity during recent solar minimum conditions. It is found using WIND and POLAR data that even for modest geomagnetic storms, relativistic electron fluxes are strongly and rapidly enhanced within the outer radiation zone of the Earth\u27s magnetosphere. Solar wind data are utilized to identify the drivers of magnetospheric acceleration processes. Yohkoh solar soft X-ray data are also used to identify the solar coronal holes that produce the high-speed solar wind streams which, in turn, cause the recurrent geomagnetic activity. It is concluded that even during extremely quiet solar conditions (sunspot minimum) there are discernible coronal holes and resultant solar wind streams which can produce intense magnetospheric particle acceleration. As a practical consequence of this Sun-Earth connection, it is noted that a long-lasting E\u3e1MeV electron event in late March 1996 appears to have contributed significantly to a major spacecraft (Anik E1) operational failure
On the kinematics of the neutron star low mass X-ray binary Cen X-4
We present the first determination of the proper motion of the neutron star
low mass X-ray binary {Cen X-4} measured from relative astrometry of the
secondary star using optical images at different epochs. We determine the
Galactic space velocity components of the system and find them to be
significantly different from the mean values that characterize the kinematics
of stars belonging to the halo, and the thin and the thick disc of the Galaxy.
The high metallicity of the secondary star of the system rules out a halo
origin and indicates that the system probably originated in the Galactic disc.
A statistical analysis of the galactocentric motion revealed that this binary
moves in a highly eccentric () orbit with an inclination of
to the Galactic plane. The large Galactic space velocity
components strongly support that a high natal kick as a result of a supernova
explosion could have propelled the system into such an orbit from a birth place
in the Galactic disc. The high Li abundance in the secondary, comparable to
that of stars in star forming regions and young stellar clusters like the
Pleiades, may suggest a relatively recent formation of the system. Following
the orbit backwards in time, we found that the system could have been in the
inner regions of the Galactic disc 100--200 Myr ago. The neutron star
might have formed at that moment. However, we cannot rule out the possibility
that the system formed at a much earlier time if a Li production mechanism
exists in this LMXB.Comment: 6 pages, 4 figures, accepted for publication in A&
Results of X-ray and optical monitoring of SCO X-1
Sco X-1 was monitored at optical and X-ray wavelengths from 1970 April 26 to 1970 May 21. The optical observations were made at six observatories around the world and the X-ray observations were made by the Vela satellites. There was a tendency for the object to show greater variability in X-ray when the object is optically bright. A discussion of the intensity histograms is presented for both the optical and X-ray observations. No evidence for optical or X-ray periodicity was detected
Recommended from our members
Relativistic electrons in the outer-zone: An 11 year cycle, their relation to the solar wind
We examine Los Alamos energetic electron data from 1979 through the present to show long term trends in the trapped relativistic electron populations at geosynchronous-earth-orbit (GEO). Data is examined from several CPA and SOPA instruments to cover the interval from 1979 through June 1994. It is shown that the higher energy electrons fluxes (E > 300 keV) displayed a cycle of {approx}11 years. In agreement with other investigators, we also show that the relativistic electron cycle is out of phase with the sunspot cycle. We compare the occurrences of relativistic electrons and solar wind high speed streams and determine that on the time scale of 15 years the two do not correlate well. The long-term data set we provide here shows a systematic change of the electron energy spectrum during the course of the solar cycle. This information should be useful to magnetospheric scientists, model designers and space flight planners
Recurrent Geomagnetic Storms and Relativistic Electron Enhancements in the Outer Magnetosphere: ISTP Coordinated Measurements
New, coordinated measurements from the International Solar-Terrestrial Physics (ISTP) constellation of spacecraft are presented to show the causes and effects of recurrent geomagnetic activity during recent solar minimum conditions. It is found using WIND and POLAR data that even for modest geomagnetic storms, relativistic electron fluxes are strongly and rapidly enhanced within the outer radiation zone of the Earth\u27s magnetosphere. Solar wind data are utilized to identify the drivers of magnetospheric acceleration processes. Yohkoh solar soft X-ray data are also used to identify the solar coronal holes that produce the high-speed solar wind streams which, in turn, cause the recurrent geomagnetic activity. It is concluded that even during extremely quiet solar conditions (sunspot minimum) there are discernible coronal holes and resultant solar wind streams which can produce intense magnetospheric particle acceleration. As a practical consequence of this Sun-Earth connection, it is noted that a long-lasting E\u3e1MeV electron event in late March 1996 appears to have contributed significantly to a major spacecraft (Anik E1) operational failure
Recommended from our members
The energy spectrometer for particles (ESP): Instrument description and orbital performance
The ESP detector is functionally described, along with the pertinent orbital and spin properties of the spacecraft that supports it. The phoswiched plastic/BGO scintillators sensor design, electronic implementation, and resulting data types are recounted, and the ground calibration procedures are reported. Several illustrative examples of data are given, including the solar proton event of 29 September 1989, and the nearly periodic episodes of high relativistic electron flux that are associated with solar coronal holes which have been a dominant feature of the space weather over the past few years. 2 refs., 10 figs., 1 tab
Observations of magnetospheric substorms occurring with no apparent solar wind/IMF trigger
An outstanding topic in magnetospheric physics is whether substorms are always externally triggered by disturbances in either the interplanetary magnetic field or solar wind, or whether they can also occur solely as the result of an internal magnetospheric instability. Over the past decade, arguments have been made on both sides of this issue. Horwitz and McPherron have shown examples of substorm onsets which they claimed were not externally triggered. However, as pointed out by Lyons, there are several problems associated with these studies that make their results somewhat inconclusive. In particular, in the McPherron et al. study, fluctuations in the B{sub y} component were not considered as possible triggers. Furthermore, Lyons suggests that the sharp decreases in the AL index during intervals of steady IMF/solar wind, are not substorms at all but rather that they are just enhancements of the convection driven DP2 current system that are often observed to occur during steady magnetospheric convection events. In the present study, we utilize a much more comprehensive dataset (consisting of particle data from the Los Alamos energetic particle detectors at geosynchronous orbit, IMP 8 magnetometer and plasma data, Viking UV auroral imager data, mid-latitude Pi2 pulsation data, ground magnetometer data and ISEE1 magnetic field and energetic particle data) to show as unambiguously as possible that typical substorms can indeed occur in the absence of an identifiable trigger in the solar wind/IMF
Relationship between sawtooth events and magnetic storms
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/95681/1/jgra21163.pd
Recommended from our members
Lunar surface outgassing and alpha particle measurements
The Lunar Prospector Alpha Particle Spectrometer (LP APS) searched for lunar surface gas release events and mapped their distribution by detecting alpha particle?; produced by the decay of gaseous radon-222 (5.5 MeV, 3.8 day half-life), solid polonium-2 18 (6.0 MeV, 3 minute half-life), and solid polonium-210 (5.3 MeV, 138 day half-life, but held up in production by the 21 year half-life of lead-210). These three nuclides are radioactive daughters from the decay of uranium-238
- …