444 research outputs found
Tetracycline resistance genes in Salmonella from growing pigs and their relationship to antimicrobial use and resistance to other antimicrobials
The aim of this study was to describe the occurrence of three genes coding for tetracycline resistance in Salmonellae isolated from normal slaughter weight pigs, and to test for relationships between the occurrence of these genes, phenotypic resistance, and the use of antimicrobials in feed and water
Performance of transition metal-doped CaCO3 during cyclic CO2 capture-and-release in low-pressure H2O vapour and H2O plasma
The effects of transition metal doping of calcium carbonate on the subsequent performance of the material during CO2 release and recapture have been evaluated for calcination under low-pressure (~0.1 mbar) water vapour and water plasma conditions. The initial samples were prepared by precipitation method from analytical grade carbonate, calcium and transition metal (Fe, Co, Zn, Cu and Ni) containing precursors. The release-recapture properties of the sorbents were monitored over five cycles involving calcination at 1200 K and carbonation at 825 K. The most noteworthy effects were observed for the Zn-doped samples, which exhibited rapid CO2 recapture. Calcination in H2O plasma was tested to evaluate the potential for in-situ material processing as a means to counteract material degradation. The impact of plasma exposure during calcination on the looping performance was mixed and dependent on the specific sample composition. The performance of the Zn-doped CaCO3 was consistently improved by plasma calcination, yielding high uptake and better retention of carrying capacity over the five cycles. All samples exhibited a deterioration in carrying capacity over repeated cycles. The Zn-doped samples also performed best in this respect (least loss of carrying capacity). The beneficial effects of Zn-doping were dependent on the Zn-content of the precursor solutions used for material synthesis.</p
Identifying the effects of land use change on sediment export: Integrating sediment source and sediment delivery in the Qiantang River Basin, China
Dramatic land use change caused by the rapid economic development in China has impacted the sediment export dynamics in the large basin. However, how land use change affects sediment export is still poorly understood. This study provided an integrated analysis of the relationships in a “three-level” chain linked as follows: “land use change → changes in sediment source and sediment delivery → sediment export change” for a better understanding. It used the InVEST sediment delivery ratio (SDR) model to analyze the Qiantang River Basin (4.27 ∗ 104 km2), China. Sediment export change was examined from the two perspectives: the effects of land use change on sediment source and on sediment delivery. Correlations between changes in individual land use types and changes in sediment source and sediment delivery were identified. The results indicated that sediment export reduced from 1.69 t ha−1 yr−1 in 1990 to 1.22 t ha−1 yr−1 in 2015 because of the decreased sediment source and a weakened sediment delivery function. In the study area, the conversions of cropland to urban land (urbanization) and bare land to forestland (afforestation) were found to make the major contributions to reductions in soil loss and SDR, respectively. Furthermore, soil loss change resulted in the decreases in total value of sediment export and SDR change caused a large-scale spatial change in sediment export. Our hotspot analysis revealed that the Wuxi River watershed should be targeted for priority conservation to optimize land use/cover for reducing sediment export. This study demonstrates the benefits of taking a comprehensive approach to analyze the processes associated with sediment export change. These allow to improve sediment management and promote aquatic ecosystem health by providing specific future land use recommendations, aimed at source treatment and delivery interception
Exploring low-carbon futures: A web service approach to linking diverse climate-energy-economy models
© 2019 by the authors. The use of simulation models is essential when exploring transitions to low-carbon futures and climate change mitigation and adaptation policies. There are many models developed to understand socio-environmental processes and interactions, and analyze alternative scenarios, but hardly one single model can serve all the needs. There is much expectation in climate-energy research that constructing new purposeful models out of existing models used as building blocks can meet particular needs of research and policy analysis. Integration of existing models, however, implies sophisticated coordination of inputs and outputs across different scales, definitions, data and software. This paper presents an online integration platform which links various independent models to enhance their scope and functionality. We illustrate the functionality of this web platform using several simulation models developed as standalone tools for analyzing energy, climate and economy dynamics. The models differ in levels of complexity, assumptions, modeling paradigms and programming languages, and operate at different temporal and spatial scales, from individual to global. To illustrate the integration process and the internal details of our integration framework we link an Integrated Assessment Model (GCAM), a Computable General Equilibrium model (EXIOMOD), and an Agent Based Model (BENCH). This toolkit is generic for similar integrated modeling studies. It still requires extensive pre-integration assessment to identify the ‘appropriate’ models and links between them. After that, using the web service approach we can streamline module coupling, enabling interoperability between different systems and providing open access to information for a wider community of users
Inoculation and P fertilizer improves food and feed production in grain legumes: Farmers' perceptions and treatment effects on yield and quality of residue biomass in Ethiopian highlands
Bill & Melinda Gates Foundatio
A Novel Approach to Study the Variability of NGC 5548
Understanding the properties of the continuum radiation and broad emission lines of active galactic nuclei provides significant information not only to model the radiation mechanism and constrain the geometry and kinematics of the broad-line region (BLR) but also to probe the central engine of the sources. Here we investigate the multifractal behavior of the Hβ emission line and the 5100 Å continuum flux light curves of NGC 5548. The aim is to search for multiscaling signatures in the light curves and heck if there is a possible nonlinear relationship between them. To this end, we use a multifractality analysis technique called the Multifractal Detrended Moving Average analysis. We detect multifractal (nonlinear) signatures in the full monitoring and densely sampled period of the Hβ line and 5100 Å continuum light curves of NGC 5548, possibly indicating the presence of complex and nonlinear interaction in the 5100 Å continuum and Hβ emission line regions. Moreover, the degree of multifractality of the Hβ line is found to be about twice that of the 5100 Å continuum. The nonlinearity of both emissions could be generated when the BLR reprocesses the radiation from the central compact source. Finally, we found that antipersistent long-range temporal correlation is the main source of the multifractality detected in both light curves.We warmly thank the anonymous referee for valuable suggestions and comments. A.B. acknowledges a CAPES PhD fellowship. L.J.G. acknowledges support by the MINECO/AEI/FEDER-UE grant AYA2017-89815-P and the University of Cantabria
- …