684 research outputs found

    Interplanetary Sample Return Missions Using Radioisotope Electric Propulsion

    Get PDF
    Solar electric propulsion (SEP) is being used for a variety of planetary missions sponsored by ESA, JAXA, and NASA and nuclear electric propulsion (NEP) is being considered for future, flagship-class interplanetary missions. Radioisotope electric propulsion (REP) has recently been shown to effectively complement SEP and NEP for missions to high-AU targets with modest payload requirements. This paper investigates the application of an advanced REP for a sample return from the comet Tempel 1. A set of mission and system parameters are varied with the goal of quantifying their impact on total mission payload. Mission parameters considered include trip-time and Earth return entry interface speed of the sample return system. System parameters considered include launch vehicle, power level of spacecraft at beginning of mission, and thruster specific impulse. For the baseline case of Atlas 401 and REP power level of 750 W, the mission time was 12 years, the payload was 144 kg, and the missions optimized to a single specific impulse generally within Hall ion thruster range. Other cases were investigated in support of graduate studies, and include the larger Atlas 551 launch vehicle and extended power level to 1 kW. The Atlas 551 cases tended to optimize dual specific impulses generally in the Hall ion thruster range for both legs of the mission. A power level of at least 1-kW and trip-time of approximately 11 years was required to obtain a total science payload close to 320 kg for the Atlas 401 launch vehicle. An Atlas 551 launch vehicle yielded a science payload of approximately 540 kg for the case of 1-kW of power and an 11-year trip time, and nearly 250 kg of science payload for the case of 1-kW of power and a 6-year trip time. Results are also reported indicating the performance ramifications of meeting a reduced Earth entry interface velocity constraint

    Determining the Magnetic Field Orientation of Coronal Mass Ejections from Faraday Rotation

    Full text link
    We describe a method to measure the magnetic field orientation of coronal mass ejections (CMEs) using Faraday rotation (FR). Two basic FR profiles, Gaussian-shaped with a single polarity or "N"-like with polarity reversals, are produced by a radio source occulted by a moving flux rope depending on its orientation. These curves are consistent with the Helios observations, providing evidence for the flux-rope geometry of CMEs. Many background radio sources can map CMEs in FR onto the sky. We demonstrate with a simple flux rope that the magnetic field orientation and helicity of the flux rope can be determined 2-3 days before it reaches Earth, which is of crucial importance for space weather forecasting. An FR calculation based on global magnetohydrodynamic (MHD) simulations of CMEs in a background heliosphere shows that FR mapping can also resolve a CME geometry curved back to the Sun. We discuss implementation of the method using data from the Mileura Widefield Array (MWA).Comment: 22 pages with 9 figures, accepted for publication in Astrophys.

    Flow and Transport in Regions with Aquatic Vegetation

    Get PDF
    This review describes mean and turbulent flow and mass transport in the presence of aquatic vegetation. Within emergent canopies, the turbulent length scales are set by the stem diameter and spacing, and the mean flow is determined by the distribution of the canopy frontal area. Near sparse submerged canopies, the bed roughness and near-bed turbulence are enhanced, but the velocity profile remains logarithmic. For dense submerged canopies, the drag discontinuity at the top of the canopy generates a shear layer, which contains canopy-scale vortices that control the exchange of mass and momentum between the canopy and the overflow. The canopy-scale vortices penetrate a finite distance into the canopy, δe, set by the canopy drag. This length scale segregates the canopy into two regions: The upper canopy experiences energetic turbulent transport, controlled by canopy-scale vortices, whereas the lower canopy experiences diminished transport, associated with the smaller stem-scale turbulence. The canopy-scale vortices induce a waving motion in flexible blades, called a monami.National Science Foundation (U.S.) (EAR 0309188)National Science Foundation (U.S.) (EAR 0125056)National Science Foundation (U.S.) (EAR0738352)National Science Foundation (U.S.) (OCE0751358

    Temperature Anisotropy in a Shocked Plasma: Mirror-Mode Instabilities in the Heliosheath

    Get PDF
    We show that temperature anisotropies induced at a shock can account for interplanetary and planetary bow shock observations. Shocked plasma with enhanced plasma beta is preferentially unstable to the mirror mode instability downstream of a quasi-perpendicular shock and to the firehose instability downstream of a quasi-parallel shock, consistent with magnetic fluctuations observed downstream of a large variety of shocks. Our theoretical analysis of the solar wind termination shock suggests that the magnetic holes observed by Voyager 1 in the heliosheath are produced by the mirror mode instability. The results are also of astrophysical interest, providing an energy source for plasma heating.Comment: 11 pages, 2 figures, accepted for publication in ApJ Letter

    Evolution of Near-Sun Solar Wind Turbulence

    Full text link
    This paper presents a preliminary analysis of the turbulence spectrum of the solar wind in the near-Sun region R < 50 Rs, obtained from interplanetary scintillation measurements with the Ooty Radio Telescope at 327 MHz. The results clearly show that the scintillation is dominated by density irregularities of size about 100 - 500 km. The scintillation at the small-scale side of the spectrum, although significantly less in magnitude, has a flatter spectrum than the larger-scale dominant part. Furthermore, the spectral power contained in the flatter portion rapidly increases closer to the Sun. These results on the turbulence spectrum for R < 50 Rs quantify the evidence for radial evolution of the small-scale fluctuations (</= 50 km) generated by Alfven waves.Comment: 8 pages, 5 figures, To appear in "Magnetic Coupling between the Interior and the Atmosphere of the Sun", eds. S.S. Hasan and R.J. Rutten, Astrophysics and Space Science Proceedings, Springer-Verlag, Heidelberg, Berlin, 200

    Plasma Depletion and Mirror Waves Ahead of Interplanetary Coronal Mass Ejections

    Full text link
    We find that the sheath regions between fast interplanetary coronal mass ejections (ICMEs) and their preceding shocks are often characterized by plasma depletion and mirror wave structures, analogous to planetary magnetosheaths. A case study of these signatures in the sheath of a magnetic cloud (MC) shows that a plasma depletion layer (PDL) coincides with magnetic field draping around the MC. In the same event, we observe an enhanced thermal anisotropy and plasma beta as well as anti-correlated density and magnetic fluctuations which are signatures of mirror mode waves. We perform a superposed epoch analysis of ACE and Wind plasma and magnetic field data from different classes of ICMEs to illuminate the general properties of these regions. For MCs preceded by shocks, the sheaths have a PDL with an average duration of 6 hours (corresponding to a spatial span of about 0.07 AU) and a proton temperature anisotropy TpTp1.2{T_{\perp p}\over T_{\parallel p}}\simeq 1.2 -1.3, and are marginally unstable to the mirror instability. For ICMEs with preceding shocks which are not MCs, plasma depletion and mirror waves are also present but at a reduced level. ICMEs without shocks are not associated with these features. The differences between the three ICME categories imply that these features depend on the ICME geometry and the extent of upstream solar wind compression by the ICMEs. We discuss the implications of these features for a variety of crucial physical processes including magnetic reconnection, formation of magnetic holes and energetic particle modulation in the solar wind.Comment: fully refereed, accepted for publication in J. Geophys. Re

    Cell walls of the dimorphic fungal pathogens Sporothrix schenckii and Sporothrix brasiliensis exhibit bilaminate structures and sloughing of extensive and intact layers

    Get PDF
    This work was supported by the Fundação Carlos Chagas de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), grants E-26/202.974/2015 and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), grants 229755/2013-5, Brazil. LMLB is a senior research fellow of CNPq and Faperj. NG acknowledged support from the Wellcome Trust (Trust (097377, 101873, 200208) and MRC Centre for Medical Mycology (MR/N006364/1). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewedPublisher PD

    Kinetic Turbulence

    Full text link
    The weak collisionality typical of turbulence in many diffuse astrophysical plasmas invalidates an MHD description of the turbulent dynamics, motivating the development of a more comprehensive theory of kinetic turbulence. In particular, a kinetic approach is essential for the investigation of the physical mechanisms responsible for the dissipation of astrophysical turbulence and the resulting heating of the plasma. This chapter reviews the limitations of MHD turbulence theory and explains how kinetic considerations may be incorporated to obtain a kinetic theory for astrophysical plasma turbulence. Key questions about the nature of kinetic turbulence that drive current research efforts are identified. A comprehensive model of the kinetic turbulent cascade is presented, with a detailed discussion of each component of the model and a review of supporting and conflicting theoretical, numerical, and observational evidence.Comment: 31 pages, 3 figures, 99 references, Chapter 6 in A. Lazarian et al. (eds.), Magnetic Fields in Diffuse Media, Astrophysics and Space Science Library 407, Springer-Verlag Berlin Heidelberg (2015
    corecore