7 research outputs found

    Non-Adiabatic Energy Surfaces of the B+H\u3csub\u3e2\u3c/sub\u3e Systems

    Get PDF
    In order to solve the dynamics of a system, the kinetic energy operator of the Hamiltonian must be diagonalized. Diagonalization requires rotation of the system into a non-adiabatic representation. This rotation is a coupling angle determined by the derivative coupling terms. Derivative coupling terms are calculated using Columbus and Brooklyn, software packages. Separation of internal dynamics characterized by Jacobi coordinates, and external dynamics characterized by a set of Euler angles and the center of mass position, requires a transformation from Cartesian coordinates to Jacobi coordinates required for subsequent dynamical calculations. Previous attempts to solve for non-adiabatic energy surfaces in this manner have failed because of an ambiguity in selecting the correct variable for describing the overall rotation of the B+H2 system, giving answers that do not agree with theory. This error, which lies within the method of converting from one coordinate system to another, is discovered and corrected. By way of this correction, correct coupling angles are calculated, and non-adiabatic energy surfaces are calculated

    Analytic Non-adiabatic Derivative Coupling Terms for Spin-orbit MRCI Wavefunctions. I. Formalism

    Get PDF
    Analytic gradients of electronic eigenvalues require one calculation per nuclear geometry, compared to at least 3n + 1 calculations for finite difference methods, where n is the number of nuclei. Analytic nonadiabatic derivative coupling terms (DCTs), which are calculated in a similar fashion, are used to remove nondiagonal contributions to the kinetic energy operator, leading to more accurate nuclear dynamics calculations than those that employ the Born-Oppenheimer approximation, i.e., that assume off-diagonal contributions are zero. The current methods and underpinnings for calculating both of these quantities, gradients and DCTs, for the State-Averaged MultiReference Configuration Interaction with Singles and Doubles (MRCI-SD) wavefunctions in COLUMBUS are reviewed. Before this work, these methods were not available for wavefunctions of a relativistic MRCI-SD Hamiltonian. Calculation of these terms is critical in successfully modeling the dynamics of systems that depend on transitions between potential energy surfaces split by the spin-orbit operator, such as diode-pumped alkali lasers. A formalism for calculating the transition density matrices and analytic derivative coupling terms for such systems is presented

    The generality of the GUGA MRCI approach in COLUMBUS for treating complex quantum chemistry

    Get PDF
    The core part of the program system COLUMBUS allows highly efficient calculations using variational multireference (MR) methods in the framework of configuration interaction with single and double excitations (MR-CISD) and averaged quadratic coupled-cluster calculations (MR-AQCC), based on uncontracted sets of configurations and the graphical unitary group approach (GUGA). The availability of analytic MR-CISD and MR-AQCC energy gradients and analytic nonadiabatic couplings for MR-CISD enables exciting applications including, e.g., investigations of π-conjugated biradicaloid compounds, calculations of multitudes of excited states, development of diabatization procedures, and furnishing the electronic structure information for on-the-fly surface nonadiabatic dynamics. With fully variational uncontracted spin-orbit MRCI, COLUMBUS provides a unique possibility of performing high-level calculations on compounds containing heavy atoms up to lanthanides and actinides. Crucial for carrying out all of these calculations effectively is the availability of an efficient parallel code for the CI step. Configuration spaces of several billion in size now can be treated quite routinely on standard parallel computer clusters. Emerging developments in COLUMBUS, including the all configuration mean energy multiconfiguration self-consistent field method and the graphically contracted function method, promise to allow practically unlimited configuration space dimensions. Spin density based on the GUGA approach, analytic spin-orbit energy gradients, possibilities for local electron correlation MR calculations, development of general interfaces for nonadiabatic dynamics, and MRCI linear vibronic coupling models conclude this overview

    Gradients and Non-Adiabatic Derivative Coupling Terms for Spin-Orbit Wavefunctions

    Get PDF
    Analytic gradients of electronic eigenvalues require one calculation per nuclear geometry, compared to 3n calculations for finite difference methods, where n is the number of nuclei. Analytic non-adiabatic derivative coupling terms, which are calculated in a similar fashion, are used to remove non-diagonal contributions to the kinetic energy operator, leading to more accurate nuclear dynamics calculations than those that employ the Born-Oppenheimer approximation and assume off-diagonal contributions are zero. The current methods and underpinnings for calculating both of these quantities for MRCI-SD wavefunctions in COLUMBUS are reviewed. Before this work, these methods were not available for wavefunctions of a relativistic MRCI-SD Hamiltonian. A formalism for calculating the density matrices, analytic gradients, and analytic derivative coupling terms for those wavefunctions is presented. The results of a sample calculation using a Stuttgart basis for K He are presented

    Analytic Non-adiabatic Derivative Coupling Terms for Spin-orbit MRCI Wavefunctions. II. Derivative coupling terms and coupling angle for KHe (A2Π1/2) ⇔ KHe B2ς1/2)

    Get PDF
    A method for calculating the analytic nonadiabatic derivative coupling terms (DCTs) for spin-orbit multi-reference configuration interaction wavefunctions is reviewed. The results of a sample calculation using a Stuttgart basis for KHe are presented. Additionally, the DCTs are compared with a simple calculation based on the Nikitin’s 3 × 3 description of the coupling between the Σ and Π surfaces, as well as a method based on Werner’s analysis of configuration interaction coefficients. The nonadiabatic coupling angle calculated by integrating the radial analytic DCTs using these different techniques matches extremely well. The resultant nonadiabatic energy surfaces for KHe are presented

    Analytic non-adiabatic derivative coupling terms for spin-orbit MRCI wavefunctions. I. Formalism

    No full text
    Analytic gradients of electronic eigenvalues require one calculation per nuclear geometry, compared to at least 3n + 1 calculations for finite difference methods, where n is the number of nuclei. Analytic nonadiabatic derivative coupling terms (DCTs), which are calculated in a similar fashion, are used to remove nondiagonal contributions to the kinetic energy operator, leading to more accurate nuclear dynamics calculations than those that employ the Born-Oppenheimer approximation, i.e., that assume off-diagonal contributions are zero. The current methods and underpinnings for calculating both of these quantities, gradients and DCTs, for the State-Averaged MultiReference Configuration Interaction with Singles and Doubles (MRCI-SD) wavefunctions in COLUMBUS are reviewed. Before this work, these methods were not available for wavefunctions of a relativistic MRCI-SD Hamiltonian. Calculation of these terms is critical in successfully modeling the dynamics of systems that depend on transitions between potential energy surfaces split by the spin-orbit operator, such as diode-pumped alkali lasers. A formalism for calculating the transition density matrices and analytic derivative coupling terms for such systems is presented

    Analytic non-adiabatic derivative coupling terms for spin-orbit MRCI wavefunctions. II. Derivative coupling terms and coupling angle for KHeA2Π1/2⇔KHeB2Σ1/2

    No full text
    A method for calculating the analytic nonadiabatic derivative coupling terms (DCTs) for spin-orbit multi-reference configuration interaction wavefunctions is reviewed. The results of a sample calculation using a Stuttgart basis for KHe are presented. Additionally, the DCTs are compared with a simple calculation based on the Nikitin’s 3 × 3 description of the coupling between the Σ and Π surfaces, as well as a method based on Werner’s analysis of configuration interaction coefficients. The nonadiabatic coupling angle calculated by integrating the radial analytic DCTs using these different techniques matches extremely well. The resultant nonadiabatic energy surfaces for KHe are presented
    corecore