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Abstract 

 

 

Analytic gradients of electronic eigenvalues require one calculation per nuclear 

geometry, compared to 3n calculations for finite difference methods, where n is the 

number of nuclei.  Analytic non-adiabatic derivative coupling terms, which are 

calculated in a similar fashion, are used to remove non-diagonal contributions to the 

kinetic energy operator, leading to more accurate nuclear dynamics calculations than 

those that employ the Born-Oppenheimer approximation, i.e., that assume off-diagonal 

contributions are zero.  The current methods and underpinnings for calculating both of 

these quantities for MRCI-SD wavefunctions in COLUMBUS are reviewed.  Before this 

work, these methods were not available for wavefunctions of a relativistic MRCI-SD 

Hamiltonian.  A formalism for calculating the density matrices, analytic gradients, and 

analytic derivative coupling terms for those wavefunctions is presented.  The results of a 

sample calculation using a Stuttgart basis for K He are presented.  Density matrices 

predict the MRCI eigenvalues to approximately 10-10 hartree.  Analytic gradients match 

finite central-difference gradients to within one percent.  The non-adiabatic coupling 

angle calculated by integrating the radial analytic derivative coupling terms matches the 

same angle approximated by the Werner method to within 0.02 radians.  Non-adiabatic 

energy surfaces for K He are presented.  
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GRADIENTS AND NON-ADIABATIC DERIVATIVE COUPLING TERMS FOR SPIN-ORBIT 

WAVEFUNCTIONS 

 
 
 
 

I. Introduction 
 

   

Computational chemistry is a useful theoretical companion of spectroscopy and 

other experimental approaches to understand the complex interaction between atoms 

and molecules.  It seeks to explain the chemical phenomena observed by experimental 

science and further to predict the nature of future experimental results.  Over the past 

several decades, computers have grown in size and speed, and the methods of 

computational chemistry have matured.  As needs are identified, the field of 

computational chemistry has grown to meet those needs.  For example, the coupling 

between electronic states and nuclear degrees of freedom, quantified by Derivative 

Coupling Terms (DCT) was largely ignored until recently.  Now that field, known as non-

adiabatic chemistry, is growing, and continues to explain a number of phenomena.   

Suppose we have a system of interest which involves a transition from one 

energy state to another.  The Diode-Pumped Alkali Laser (DPAL) is one such system in 

which non-adiabatic dynamics plays an important role.  In a DPAL, the alkali atoms are 
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pumped to the excited 3
2

2P  state from which they transition to the 1
2

2P  state via 

collision with a gas, creating a population inversion in the 1
2

2P  state; finally they lase to 

the ground state (see schematic in Figure 1).  To model the transition of the system, the 

nuclear wavefunction can be represented as a two-component vector, 

 
3

2

1
2

P

P

 
 
 
 

 (1) 

and the Hamiltonian which will propagate it can be represented as  

 
3

2

1
2

2 0
01

0 0

P

Pm



 





         
  
 

H K V  (2) 

where   indexes the nuclei and the 's  are the potential energy values (determined 

by the electronic Schrodinger equation).  We restrict the discussion that follows to a 

diatomic system consisting of an alkali atom and a noble gas atom.  Because this 

Hamiltonian is completely diagonal, a wavefunction that is prepared in the 3
2

2P  state  

 
 

Figure 1. Schematic of DPALS 
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3
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3
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will never couple to the 1
2

2P  state (note that this Hamiltonian does not account for 

interaction with an electromagnetic field or vacuum fluctuations).  This Hamiltonian is 

adiabatic in that it does not allow a wavefunction to transition between potential 

energy surfaces, and is a result of the Born-Oppenheimer Approximation which 

completely decouples the electronic and nuclear dynamics. 

 Such systems cannot be studied under the Born-Oppenheimer Approximation, 

and a more realistic albeit complicated Hamiltonian must be employed: 

 
3

2

1
2

2 0
1

02

P

P

P

Pm

 

  





       
   
 

H  (3) 

The off-diagonal values in the kinetic energy operator are the DCTs which are a result of 

the coupling of electronic and nuclear dynamics.  They are not, in general, negligible, 

but they do allow a nuclear wavefunction to transition between the two levels.   

Unfortunately, these terms also introduce off-diagonal derivative operators into 

the kinetic energy operator, making the propagation equations difficult to solve.  To 

remedy this shortcoming, we may introduce a unitary transformation, which is 

calculated from the DCTs, to the Hamiltonian to diagonalize the kinetic energy operator: 

 

3
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1
2

2

† † †

2

1 12

12 2

0
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02

01

02

P

P

P

Pm

m

 
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

 





 

 

       
   
 

   
     

   





U HU U U U U

 (4) 
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This transformation results in two new diabatic potential energy curves, 1  and 2 , as 

well as a coupling curve, 12 .  This diabatic form of the Hamiltonian still allows 

transitions between the two states, but now results in tractable nuclear dynamics 

equations. 

In order to construct this form of the Hamiltonian, we must be able to calculate 

the DCTs, P , and from them the transformation matrix .U   Shepard’s method of 

analytic gradients [1] [2] [3] [4] and Lischka’s adaptation of it to DCTs [5] [6] has made 

their calculation possible in COLUMBUS [7] [8] [9] [10], a popular quantum chemistry 

code package.  While Yabushita has implemented the ability to calculate the 

wavefunctions and energies of open-shell systems, including spin-orbit systems, in 

COLUMBUS [11], the analytic calculation of the DCTs (and energy gradients) for such 

systems has not been available for Configuration Interaction (CI) calculations.   

Previously, a number of methods were available to approximate inclusion of 

spin-orbit coupling into DCTs.  For example, code is available to calculate spin-orbit DCTs 

for a Mulit-Configuration Self-Consistent Field (MCSCF) [12]; however, MCSCF 

calculations are generally smaller than CI calculations, and thus produce less-accurate 

wavefunctions.  Spin-orbit coupling can also be added perturbatively to the non-

relativistic Hamiltonian (see, e.g., [13] [14] [15]); however, perturbative approaches are 

generally not applicable to larger atoms.  It is also possible to perform a spin-orbit 

calculation to create the CI wavefunctions, but then use a non-relativistic approach to 

calculate the DCTs and resultant transformation which are applied to the entire 
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wavefunction [16] [17] [18]; however, this method is not as rigorous as including the 

spin-orbit effects in the DCTs.   

Werner introduced a rudimentary yet extremely fast way to calculate the non-

adiabatic coupling angle by examining the CI coefficients of the wavefunction, the 

derivative of which is the DCT [12].  Because of the speed and ease of calculation, we 

will use this last method as a quick validation of the method presented herein. 

The recent experimental work at the Air Force Institute of Technology on DPALs 

has given impetus to the theoretical effort in the system’s nuclear dynamics, and hence 

a need for accurate, open-shell spin-orbit DCTs.  This dissertation reviews the 

established methods available in COLUMBUS and then presents the formalism whereby 

they can be augmented to produce analytic gradients and DCTs for open-shell spin-orbit 

wavefunctions.  This formalism has been implemented in an experimental version of 

COLUMBUS at the Department of Defense Super-computing Resource Center (DSRC) at 

Wright-Patterson Air Force Base, OH [19].  The alkali-noble gas system of K He has been 

chosen to validate the code due to its simplicity, the availability of a spin-orbit potential, 

and its potential application to DPALs.  The resultant gradients, DCTs, and adiabatic 

potential energy surfaces of K He, the last of which may be used for the nuclear 

dynamics calculation, are presented herein. 
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II. Background 
 

Second-Quantization of the Fine-Structure Hamiltonian 

The energy operator, or Hamiltonian, will be the principal quantum-mechanical 

tool used in this paper to derive the quantities of interest to us, viz, energy eigenvalues, 

energy gradients, and derivative coupling terms.  The Hamiltonian obeys the eigenvalue 

equation  

 ˆ I

I IH E    (5) 

in which I  are the solution wavefunctions, and the IE  are the corresponding energy 

eigenvalues.  A brief introduction to the Hamiltonian, and the Schrödinger equation, is 

discussed in Appendix A. 

The Electronic Hamiltonian 

For the atomic and molecular systems which we will explore in this paper, we 

can formulate a Hamiltonian in which the kinetic energy of each particle and each pair-

wise Coulombic potential energy are represented, all of which are linearly superimposed 

[20]: 

 
2 2

1 1
2 2

, , ,

1

2 2

i

i i j i ii j

Z Z Z
H

m r rr r r r

  

     

 
     

 
      (6) 

where Z  and m  are the charge and mass, respectively, of the th  nucleus; ir  and r

are the position of the thi  electron and th nucleus, respectively; and 2

  and 2

i  are 

the Laplacian operators of the th nucleus and the thi electron, respectively.  In this 
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equation and for the remainder of the paper we will use atomic units for which the mass 

of the electron, the charge of the electron, and  are all equal in magnitude to unity.  

The terms in equation (6) are, from left to right:  

1. The nuclear kinetic energy summed over the nuclei 

2. The electronic kinetic energy summed over electrons 

3. The nuclear potential energy summed over nuclear pairs 

4. The electronic potential energy summed over electron pairs 

5. The nuclear-electronic potential energy summed over nucleus-electron pairs 

This Hamiltonian is often split into a nuclear Hamiltonian 

 
2

2
nH

m



 


   (7) 

and an electronic Hamiltonian 

 
2

1
2

, ,

1

2

i
e

i i j i ii j

Z
H

r rr r



 


   


    (8) 

Notably missing from either Hamiltonian is the nuclear potential term.  This term will be 

the same for all electronic eigenvalues, so it will not affect the calculations to come; 

rather, it will be added to the final energy as an offset. 

Effective Core Potentials 

The above electronic Hamiltonian is known as an all-electron Hamiltonian, since 

it is assumed that i  indexes all electrons belonging to the atoms in the system.  For 

larger systems or small systems with larger atoms, the two-electron interaction term 

can become quite cumbersome to calculate.  It is expedient, then, to replace some of 
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the core electrons that play a lesser role in the chemistry with an Effective Core 

Potential (ECP), while dealing with the more important valence electrons individually 

[21] [22].  The resultant electronic Hamiltonian is 

  
2

1
2

, ,

1

2

ECPi
e i

i i j i iii j

Z
H U r

r rr r



 


    


     (9) 

where i  indexes the valence electrons and possibly some subset of the core electrons.  

The ECP captures the approximate effects of the core electrons on the valence set. 

Relativistic Effects 

 The above electronic Hamiltonian, while powerful, does not take into account 

the effects of relativity on the energy eigenvalues.  Appendix B addresses the Breit-Pauli 

Hamiltonian, a more accurate and relativistic energy operator.  While we will not 

explicitly use the Breit-Pauli Hamiltonian in our calculations, we will be using one of the 

quantities derived from it.  We include the largest relativistic contribution in the valence 

region, the spin-orbit contribution, by means of a Relativistic ECP (RECP), 

  
2

1
2

, ,

1

2

RECPi
e i

i i j i iii j

Z
H U r

r rr r



 


    


     (10) 

which is calculated by transforming the solutions to the Dirac-Hartree-Fock equations 

[23] [24].  The RECP is calculated in two pieces:  an Averaged Relativistic Electron 

Potential (AREP), which approximates the average fine-structure contribution, and a 

Spin-Orbit Potential (SOP), which effects the actual splitting of the energy 

eigenfunctions.  The spin-orbit potential may be defined as [11] 
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  
, ,

,so l i i

i l

H i l


     (11) 

in which i  is the spin vector of the thi electron, il   is the orbital angular momentum 

vector of the thi electron with respect to the th nucleus, and  ,l i   is a numerically-

calculated radial potential term.  (Compare this term to the term soh  in equation (306) 

of Appendix B).  Making these corrections to the electronic Hamiltonian in equation (9) 

yields a spin-orbit electronic Hamiltonian: 

  
2

1
2

, ,

1

2

AREPi
e i so

i i j i iii j

Z
H U r H

r rr r



 


     


     (12) 

One- and Two-Electron Operators 

The electronic Hamiltonian in equation (12) has two types of integrals with which 

we will be concerned: the one-electron operators (those that sum only over one 

electronic coordinate) and the two-electron operators (those that sum over two 

electronic coordinates).  We define the operators 

 

   

    

 

2

,

ˆ
2

ˆ ,

1
ˆ ,

AREPi
i

i

so

l i i

l

i j

Z
h i U r

r r

h i i l

g i j
r r



 




  

 
      

 






  (13) 

so that the electronic Hamiltonian may be written in the more compact form 

      1
2

,

ˆ ˆˆ ˆ ,so

i i i j

H h i h i g i j      (14) 
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Second Quantization 

The Hamiltonian introduced in the previous section is the first-quantized 

Hamiltonian.  Some of the distinguishing features of the first-quantization are [3]: 

1. It is constructed from the fundamental characteristics of the particles (mass, 
charge, position). 

2. It depends on the number of electrons, N, and thus it confines its eigenfunctions 
to have N electrons. 

3. There is no requirement that the functions on which it operates be 
antisymmetric or even built from an orbital basis. 

4. The choice of orbital basis has no effect on the form of the Hamiltonian. 

In contrast, we wish to form a second-quantized Hamiltonian that is constructed from an 

orbital basis and is unconfined by electron number.  Furthermore, this Hamiltonian will 

be represented in a space of antisymmetric many-electron functions, known as 

Configuration State Functions (CSFs). 

Consider the spin-orbital projectors, 

        | |i ir i r i     (15) 

where  r i  signifies the thi  electron in the thr spatial orbital and  i   signifies the 

same electron in the th spin state.  Through completeness, 

        
,

ˆ| | 1i i

r

r i r i


      (16) 

which we can now insert judiciously into the first-quantized Hamiltonian: 
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                 

                 

                 

, ,

1
2

, , ,

, ,

| | | |

| | , | |

| | | |

i i i i

i r s

i i i i

i j i r s

so

i i i i

i r s

H r i r i h i s i s i

r i r i g i j s i s i

r i r i h i s i s i

 

 

 

       

       

       



  

  

  

 

 

 

 (17) 

A word of caution: equation (16) is only true for a complete (i.e. infinite) set of orbitals.  

All computational chemistry calculations use a finite basis, and thus equation (16) is not 

necessarily true.  The result of this approximation is that the second-quantized 

Hamiltonian at the end of this section is not exactly equal to the first-quantized 

Hamiltonian at the beginning.  However, in order to use a first-quantized Hamiltonian in 

calculations, it too must at some point be projected into a working CSF basis; if this basis 

is the same as the one found in equation (16), then the first- and second-quantized 

Hamiltonians will have the same representation [3].  

Since the sums over spin-orbitals are independent, they can be combined.  

Further, since  h i and  ,g i j are not functions of spin, the spins are not involved in 

those integrals: 

 

                 

                 

                 

, , ,

1
2

, , , ,

, , ,

| | | | |

| | , | | |

| | | |

i i i i

i r s

i i i i

i j i r s

so

i i i i

i r s

H r i r i h i s i s i

r i r i g i j s i s i

r i r i h i s i s i

 

 

 

       

       

       



   

   

  

 

 

 

 (18) 

For compactness, let us rename the integrals: 

 

     

       

         

| |

| , |

| |

rs

rs

so so

r s i i

h r i h i s i

g j r i g i j s i

h r i h i s i     

  

  

  

 (19) 
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Note that since g started as a two-electron operator, it still has an electron dependence 

after a single integration.  The orthonormality of the spin functions eliminates one of 

the spin sums in the non-spin terms: 

 

       

         

       

, ,

1
2

, , ,

, , ,

i i rs

i r s

i i rs

i j i r s

so

i i r s

i r s

H r i s i h

r i s i g j

r i s i h





 
 

   

   

   













 

 (20) 

In order to remove all electron dependence from g , we again apply completeness: 

       

                         

       

, ,

1
2

, , , , , ,

, , ,

| |

| | | | |

| |

i i rs

i r s

i i j j rs j j

i j i r s t u

so

i i r s

i r s

H r i s i h

r i s i t j t j g j u j u j

r i s i h



  

 

 

   

           

   



  

  

 



 

 

  

(21) 

Following the same prescription as equations (18) and (20), the spin functions  and 

are removed from the integral and one of the spin sums is eliminated.  We now define 

the integral 

      | |rstu rsg t j g j u j    (22) 

and we have 

 

       

               

       

, ,

1
2

, , , , ,

, , ,

| |

| | |

| |

i i rs

i r s

i i j j rstu

i j i r s t u

so

i i r s

i r s

H r i s i h

r i s i t j u j g

r i s i h



 

 
 

   

       

   



 

  

 



 

 

 (23) 

Let us define the creation and annihilation operators  
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   

   

†

'

'

1
ˆ |

1

ˆ ' |

r i

i

r i

i

a r i
N

a r iN





 

 

 


 




 (24) 

(see Appendix C).  The product of a raising and a lowering operator with identical indices 

will only have non-zero results on the diagonal of an operator matrix. 

 

       

       

†

'

'

1
ˆ ˆ | ' |1

1

| |

r r i i

i i

i i

i

a a r i r iN
N

r i r i

     

   

  
    

  

 

 


 (25) 

We can now place these operators into the Hamiltonian: 

                

†

, ,

1
2

, , , , ,

†

, , ,

ˆ ˆ

| | |

ˆ ˆ

r s rs

r s

i i j j rstu

i j i r s t u

so

r s r s

r s

H a a h

r i s i t j u j g

a a h

 


 

   
 

       




  





 



 (26) 

Note that the pair of operators for the non-relativistic one-electron integral is spin 

preserving, but the pair for the spin-orbit integral is not.  Note also that the g term 

appears to have four creation/annihilation operators; however, since j i  is not 

allowed, one pair of these operators is short of a complete sum.  We can correct this 

omission by adding and subtracting the j i  term: 

 
               

               

†

, ,

1
2

, , , , ,

†

, , ,

ˆ ˆ

[

]

ˆ ˆ

r s rs

r s

i i j j

r s t u i j

i i i i rstu

so

r s r s

r s

H a a h

r i s i t j u j

r i s i t i u i g

a a h

 


 

   
 

       

       











 



 (27) 
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Now the second term includes a complete integral over the electronic variable i : 

        |i i sts i t i          (28) 

and the Hamiltonian is simplified as 

  

†

, ,

† † †1
2

, , , ,

†

, , ,

ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ

r s rs

r s

r s t u r u st rstu

r s t u

so

r s r s

r s

H a a h

a a a a a a g

a a h

 


      
 

   
 

 



 





 



 (29) 

Let us further define [11] [3] 

 

2
†

†

ˆ ˆ ˆ

ˆ ˆ ˆˆ

ˆ ˆ ˆ

rs r s

rstu rs tu ru st

r s r s

E a a

e E E E

E a a

 


   





 





 (30) 

such that the final form of the second-quantized spin-orbit Hamiltonian takes the form 

 1
2

, , , , , , ,

ˆ ˆˆ so

rs rs rstu rstu r s r s

r s r s t u r s

H E h e g E h   
 

      (31) 

In a later section we will see that the ˆ
rsE  are generators of the Unitary Group.  For this 

reason, the second-quantized form of the Hamiltonian will be central to the 

computational chemistry techniques we discuss in later sections. 

Density Matrices 

One tool available from second quantization of the Hamiltonian will be vitally 

important to the construction of analytic gradients and DCTs is the density matrix.  Let 

I  be an eigenfunction of the Hamiltonian in equation (31).  Then its energy 

eigenvalue is  
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 1
2

, , , , , , ,

ˆ ˆˆ

I

I I

so

I rs rs I I rstu rstu I I r s r s I

r s r s t u r s

E H

E h e g E h   
 

  

          
 (32) 

Since the integral matrices are not functions of electronic coordinates, they commute 

with the eigenfunctions and we have  

 1
2

, , , , , , ,

ˆ ˆˆI so

rs I rs I rstu I rstu I r s I r s I

r s r s t u r s

E h E g e h E   
 

            (33) 

We define the quantities 

 
ˆ

ˆ

rs I rs I

rstu I rstu I

D E

d e

  

  
 (34) 

to be elements of the one-electron and two-electron density matrices, respectively.  The 

spin-orbit density matrix, which would appear in the last term of equation (33), will be 

addressed in Chapter III.  For many transition properties between wavefunctions, 

including DCTs, it is necessary to use transition density matrices which we similarly 

define as 

 
ˆ

ˆ

JI

rs J rs I

JI

rstu J rstu I

D E

d e

  

  
 (35) 

These matrices will appear often in the derivations in Chaper III as well as the 

appendices. 
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Gauge Theory 

 The many-body problem 

Systems of more than two bodies are, in general, not analytically tractable [25].  

The sole example of a two–body problem is the hydrogen atom (or exotic variants 

thereof) consisting of one proton and one electron; even the basic hydrogen molecule 

has no analytic solution.  The energies and eigenfunctions of the hydrogen atom were 

solved analytically long ago; indeed, this was one of the primary reasons for the 

introduction of quantum mechanics [26]. The desire to understand molecules from 

diatoms to proteins and beyond requires various types of approximations.  This is the 

many-body problem that is fundamental to this field, which forces us to look for 

computational solutions to molecular problems. 

Another problem that faces computational chemistry is the disparate nature of 

the particles involved.  Electrons are light and fast compared to the massive, lumbering 

nuclei (which, for most calculations, are modeled as a single particle).  The vastly 

different sizes of these two particles leads to two separate timescales and separates the 

problem of molecular dynamics into an electronic and a nuclear piece (see the 

separation of the Hamiltonian, equations (7) and (8)). 

The Born-Oppenheimer Approximation 

The Born-Oppenheimer approximation attempts to effect this separation.  In this 

section, let r  represent the collection of electronic coordinates, and let R  represent 

the collection of nuclear coordinates.  Assume we have a complete set of orthonormal 

electronic wavefunctions such that 
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 |i j ij      (36) 

The solution to the Schrödinger equation (equation (5)) can be expanded in this basis: 

 | |I Ii i

i

      (37) 

which is called the Born-Oppenheimer expansion [27].  As we will see shortly, these 

coefficients are actually the nuclear wavefunctions.  Alternatively, we can write 

 

1

2

3

|

I

I

I I

I

 
 
     
 
 
 

 (38) 

in the matrix representation.  The Born-Oppenheimer approximation takes advantage of 

the different timescales discussed in the last section by assuming the Hamiltonian can 

be partitioned into fast and slow, or electronic and nuclear, operators.  The Schrödinger 

equation can be cast as 

  ˆ ˆ | 0I

e n Ii i

i

H H E       (39) 

where ˆ
nH  is the part of the full Hamiltonian that depends on nuclear operators and ˆ

eH  

depends on electronic operators, as defined in equations (7) and (8), respectively.  

Consider the integral equation 

  ˆ ˆ| | 0I

j e n Ii i

i

H H E        (40) 

which is expanded as 

  ˆ ˆ| | | | | | 0I

j e Ii i j n Ii i j Ii i

i

H H E                  (41) 
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In the first term, the Hamiltonian acts on the bra and pulls out an eigenvalue, while the 

Ii does not participate in the integration, leaving a delta function.  In the third term, 

neither IE  nor Ii  participates in the integration, leaving another delta function: 

 ˆ| | 0I

j Ij j n Ii i Ij

i

H E           (42) 

To interpret the second term, it is best to project it into coordinate space by employing 

the identity 

 
,

ˆ| , , | 1
r R

r R r R   (43) 

where 

 

 

 

 

 

2

; , |

, |

ˆ, | | ,
2

, | | ,

, | | ,

i i

Ii Ii

n

j j

I I

r R r R

R r R

r R H r R
m

R r R r R

E R r R E r R



 

 

 

  

    


   

  

  

  (44) 

Note that while the i
 are strictly functions of electronic coordinates, they are 

parameterized by the nuclear coordinates [27].  Since the total wavefunction must be a 

function of both nuclear and electronic coordinates, this leaves the nuclear dependence 

in the Ii term.  The form of the nuclear Hamiltonian in coordinate space comes from 

equation (7).  (Note that by including the kinetic energy operator but not the potential 

energy operator, we have inherently prepared for the coordinate representation since it 

is the momentum operator that will be represented by a derivative operator.  Were we 
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to prepare for the momentum representation, we might choose to keep the potential 

energy operator and not the kinetic.)  In the coordinate representation, equation (42) is  

              * 2

,

1
; ; 0

2

I

j Ij j Ii i Ij

i

R R dr r R R r R E R R
m



 

             (45) 

The derivative operator must be distributed across the product in brackets in the usual 

fashion: 

           

           

2

2 2

; ; ;

2 ; ; ;

i Ii i Ii Ii i

i Ii i Ii Ii i

r R R r R R R r R

r R R r R R R r R

   

   

  

  

             

        
 (46) 

which leads to the equation 

 
         

               

*

,

* 2 * 2

1
2 ; ;

2

; ; ; ; 0

{

}

j Ij j i Ii

i

I

j i Ii j i Ii Ij

R R dr r R r R R
m

r R r R R r R r R R E R R

 
 

 

  

   

    

          

 
(47) 

Each term in this Schrödinger equation operates on  Ii R  or  Ij R .  Therefore, the 

terms can be collected as follows: 

     

         

2

* * 2

,

1

2

1
2 ; ; ; ;

2

I

j Ij

j i j i Ii

i

R E R R
m

dr r R r R r R r R R
m


 

  
 



   

 
      
 

      



 

 (48) 

The left-hand side of this equation is devoid of electronic dependence, while the right-

hand side involves operators which take derivatives of electronic functions with respect 

to nuclear coordinates.  We can compactly rewrite the right-hand side as 

    ;ji Ii

i

r R R   (49) 

where 
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     

     

     

*

* 2 2

1
2

2

; ;

; ;

ji ji ji

ji j i j i

ji j i j i

R P R Q R
m

P R dr r R r R

Q R dr r R r R


 



 



 

   

   

   

   

   







 (50) 

leading to the more compact Schrödinger equation 

          21

2

I

j Ij ji Ii

i

R E R R R R
m


 


 
        
 
   (51) 

or, in matrix representation, 

          21

2

I

I IR E R R R R
m


 

 
       
 
 I ε I Λ  (52) 

Note that all matrices on the left are diagonal matrices, while the matrix on the right 

side is unrestricted.  If we assume that derivatives of electronic functions with respect to 

nuclear coordinates, or DCTs,  are negligible compared to the rest of the equation, the 

right side of equation (51) or (52) is summarily zero, and we have the adiabatic nuclear 

wave equation [28]: 

      21
0

2

I

IR E R R
m


 

 
      
 
 I ε I  (53) 

which is the extent of the Born-Oppenheimer approximation; nuclear and electronic 

dynamics have been completely separated. 

Adiabatic chemistry, the subject of most computational chemistry, relies on the 

Born-Oppenheimer approximation and the resultant adiabatic equation above.  The 

lumbering nuclei are frozen in space and the electronic Schrödinger equation is solved 

around them.  The eigenvalues of that equation, ,ε  parameterized by the nuclear 
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coordinates, serve as the adiabatic potential energy surface in equation (53). (The term 

surface is used loosely, since it will have as many dimensions as there are internal 

nuclear coordinates.)  This approximation is feasible because the timescale of the 

electrons is so short that the nuclei are shepherded by the electronic wavefunction 

(rather than by information about the precise location of individual particles), which 

adjusts, for practical calculations, instantaneously to the nuclear motion.  Since all 

operators in the nuclear equation are diagonal, these equations are simply solved, and 

the nuclear dynamics can be studied with relative ease. 

Non-adiabatic Chemistry 

Though adiabatic chemistry provides a straightforward way to tackle nuclear 

dynamics, the Born-Oppenheimer approximation is a compromise.  The term adiabatic 

in this sense refers to the fact that the complete separation of fast and slow variables 

does not allow the nuclear wavefunction to pass from one potential energy surface (or 

set of electronic eigenvalues) to another quantum mechanically, a diabatic process, by 

transferring electronic potential energy to nuclear kinetic energy.  This means that a 

molecule has no way, apart from electromagnetic interaction, of changing its electronic 

state.  We know this premise to be false, as chemistry is wrought with examples of 

molecules which, after briefly contacting another, rebound with a higher (or lower) 

energy level.  For problems in which these transitions are critical, the field of non-

adiabatic chemistry is more appropriate. 

Non-adiabatic chemistry still relies, at least partially, on the Born-Oppenheimer 

approximation.  It still requires that the Hamiltonian be separated into nuclear and 
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electronic operators, and that the wavefunction be a product of nuclear and electronic 

wavefunctions (this latter requirement being fundamental to gauge theory, as explained 

shortly); however, it relaxes the assumption that the elements of the DCT matrix in 

equation (52) are negligible.  To understand where these terms are not negligible, 

consider the following derivation, beginning with the electronic Schrödinger equation 

[29]: 

 ˆ | |e i i iH      . (54) 

Taking the nuclear derivative of this equation and integrating against 
j  where j i

yields 

 ˆ ˆ| | | | | | | |j e i j e i j i i j i iH H                         (55) 

where 

 


    (56) 

In the second term, the electronic Hamiltonian acts on the bra pulling out an eigenvalue; 

in the third term the derivative of the eigenvalue is not involved in the integration, and 

the integral evaluates to zero by orthogonality; in the fourth term the eigenvalue is not 

involved in the integral, but it does not evaluate to zero: 

 ˆ| | | |j e i j j i i j iH                   (57) 

The result gives an alternate definition to the elements of the P matrix part of the DCT, 

which were defined in equation (50): 
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ˆ| |

|
j e i

ji j i

i j

H
P

 
 

 

  
    


 (58) 

where 

 



P P  (59) 

(Note that P  is a vector; with this understanding, we will drop the arrow notation).  

Thus we see that elements of P  and hence Λ  become significant when the energy 

eigenvalues of two distinct wavefunctions become very close.  Note that when 
i j  ,

jiP  is undefined; such points are called conical intersections [30].  For the diatomic 

systems that will be the focus of this paper, such crossings occur only between 

wavefunctions of dissimilar spatial symmetries, which will not be subject to derivative 

coupling) [31]. 

Derivative Coupling Terms 

Given that there are certain points in the nuclear manifold where the DCTs 

become significant, they deserve closer scrutiny.  Consider again the matrix equation 

(52), now including the definitions (50): 

  21 1
2

2 2

I

I IE
m m

 

 
  

 
             

 
 I ε I P I Q  (60) 

where the nuclear coordinate dependence of operators and functions is understood and 

has been dropped from the notation for simplicity.  Since the DCT has second nuclear 

derivatives in it, it is part of the kinetic energy term rather than the potential: 
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  21
2 0

2

I

IE
m

 

 
 

 
            

 
 I P I Q ε I  (61) 

In this form of the equation both P  and 
Q have non-zero off-diagonal derivative 

components which make this set of equations very difficult to solve in its current form.  

We require a similarity transformation which will diagonalize the kinetic energy term 

but may undiagonalize the potential energy term  ε , a compromise which yields an 

equation with no off-diagonal derivative operators. This transformation takes the 

equation from the adiabatic basis to a diabatic basis.  Diagonal elements of ε  in this 

diabatic basis are the diabatic potential energy surfaces and are coupled by the off 

diagonal elements of ε .  This transformation from the adiabatic to the diabatic basis is 

called the non-adiabatic transformation.   

In order to find that transformation, it is first necessary to manipulate the form 

of the DCTs [27].  Let us first derive an alternate form of 
Q .  In order to accomplish 

this, we first calculate the divergence of P : 

 

     

        

    

*

* * 2

*

j iij

j i j i

j i ij

dr r r

dr r r dr r r

dr r r



  

  



 

 

   

 

     

    

   



 



I P

Q

 (62) 

Now consider 2P : 

          * *' ' 'i k k jij
k

dr r r dr r r 

         P P  (63) 

Since P is antisymmetric,  

 * *

ik ki i k k iP P dr dr 

             (64) 
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and so it follows that 

          * *' ' 'i k k jij
k

dr r r dr r r 

            P P  (65) 

Furthermore, if the electronic eigenfunctions are real, 

          * *' ' 'i k k jij
k

dr r r dr r r 

           P P  (66) 

which can be rewritten as 

          * *' ' 'k k i jij
k

dr dr r r r r 

               P P  (67) 

The double integral over the sum of k -indexed functions is a completeness identity 

(analogous to k k

k

  ), and produces a dirac delta function: 

             * * *' ' ' ' ' 'k k i j i j

k

dr dr r r r r dr dr r r r r                               (68) 

and thus we conclude that 

      *

i jij
dr r r 

      P P  (69) 

Thus  
ij

  P P is the term added to ij


Q  in equation (62).  This means that 

Q  and 

P  are related by 

   2  

   Q I P P  (70) 

We can use this relationship to eliminate 
Q  in equation (61): 

    2 21
2 0

2

I

IE
m

  

  
 

 
               

 
 I P I I P P ε I  (71) 
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Since P  and  are non-commuting operators,    

     P I I P .  Furthermore, 

note that 

    I I I

  

            I P I P P I  (72) 

so that the operator relationship 

    

         I P I P P I  (73) 

can be substituted into equation (71), yielding 

  
21

0
2

I

IE
m




 

 
       
 
 I P ε I  (74) 

Note that this equation looks like the adiabatic nuclear Schrödinger equation 

(equation(53)), with the exception that i





  I P  has replaced i 


 I  as the 

momentum operator.  This form is called the gauge-covariant momentum [32] for 

reasons that will be made clear in the next section (cf. the momentum operator in the 

Dirac equation, equation (289) in Appendix B). 

This simplification has not changed the difficult nature of the equations as 
P  

still has off-diagonal derivative operators. A transformation is still necessary; however, 

with the P identified in this form as the gauge potential [32](in electrodynamics the 

vector potential plays the same role), we can use the constructs of gauge theory to find 

that transformation. 
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 Derivative Coupling Terms in Gauge Theory  

By separating the wavefunction and Hamiltonian into nuclear and electronic 

parts, the Born-Oppenheimer approximation has set the stage for casting non-adiabatic 

chemistry in the language of gauge theory.  The nuclear coordinates serve as an external 

manifold, which is a Hilbert space.  At each point on the manifold there is an internal 

space, which is the space spanned by the electronic wavefunctions.  Hence the point on 

the nuclear manifold parameterizes the electronic wavefunctions. Together, these 

spaces form a fiber bundle, for which the derivative coupling matrix serves as the gauge 

potential.  If the internal-space basis did not change as a function of nuclear 

coordinates, the gauge potential would be everywhere zero, and the fiber bundle would 

be considered trivial.  This is the algebraic equivalent of the complete Born-

Oppenheimer approximation which considers those changes negligible.  But, as the 

electronic wavefunctions do change with nuclear position, the fiber bundle is non-trivial, 

and the gauge potential serves as a connection that dictates how the internal space 

slowly rotates as a function of external coordinates.  According to fiber bundle theory, 

the bundle at each point on the manifold is equivalent to any other, and they can be 

transformed one into the other by a gauge transformation. That is, although the 

electronic basis functions at different nuclear positions are not the same, they differ 

only by a unitary transformation, which will be the non-adiabatic transformation 

mentioned previously.  By understanding the underlying theory of gauge potentials, we 

can see the utility of the derivative coupling terms in effecting that transformation. 
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Gauge-covariant derivative 

In this section we introduce an alternative perspective on the gauge covariant 

derivative in equation (74).  The total differential of the vector in equation (38), 

 

1

2

3

I

I

I

I

d

d
d

d

 
 

  
 
 
 

 (75) 

produces a vector representing the change in the components of I ; however, this is 

not the total change of 
I , as it does not account for a change in the basis [32].  The 

total change, represented by the total differential of the wavefunction, using 

equation(37), is 

  | | |I Ii i Ii i

i

d d d         (76) 

where the I  are the nuclear wave functions and the 
i  are the electronic 

wavefunctions, and the total differentials are defined as 

 
,

,

| |I I k

k k

Ii Ii k

k k

d dR
R

d dR
R


 


 


    




  






 (77) 

The first term under the summation in equation (76) looks like a standard differential, 

i.e., it takes the differential of each component of the eigenvector as in equation (75).  

The second term, however, takes into account the change in the internal (electronic) 
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space due to a change in external (nuclear) space.  To develop the meaning of | id  , 

consider that we effect a change in | i   via a unitary transformation: 

 ˆ | |i j j

j

U c     (78) 

Since the group of unitary transformations of degree n ,  U n , (which can be 

represented as the set of all n n  unitary matrices) is a compact Lie group, it can be 

expressed as the exponentiation of the underlying Lie algebra  u n  [33]: 

        1 2
ˆ ˆ, ,... exp a a

a

R R R  U X  (79) 

where the  are the parameters and the ˆ aX are the generators.  An infinitesimal 

rotation of the wavefunction is effected by [32] 

        1 2
ˆ ˆ, ,... | exp ... | | |i a a i i i

a

d R d R d R d           U X  (80) 

This can be shown by using the Taylor series expansion of exp and keeping only linear 

terms: 

       1 2
ˆ ˆ ˆ, ,... | | | |i a a i i i

a

d R d R d R d      
 

       
 

U I X  (81) 

This implies that 

   ˆ | |a a i i

a

d R d  
 

   
 
 X  (82) 

We can now substitute the left-hand side of this equation into equation (76): 
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 

 

ˆ| | |I Ii i a a Ii i

i a i

I a a I

a

d d d R

d d R

  



       

   

  



X

X
 (83) 

where, in the second line, we have collected the coefficients into vectors and consider 

the matrix form of the generators.  The second term has now become an operator 

simply multiplied by the original wavefunction.  We recognize that the total differential 

of the eigenfunction | I   is more than just the total differential of the vector 

components, and give it the symbol ' :d  

 

 

 

ˆ| | |

'

I Ii i a a Ii i

i a i

I I a a I

a

d d d R

d d d R

  



        

    

  



X

X
 (84) 

where again in the second line we have moved from the abstract operator-ket form of 

the equation to the matrix-vector form.  Since we can choose the nuclear coordinates to 

be independent of each other, the total derivatives are equal to their partial derivatives: 

  '

k k kI I a a IR R R

a

R
  

  
  

     X  (85) 

which we can collect into vector form: 

  I I a a I

a

R         I I X  (86) 

and rename 

  a a

a

R

 P X  (87) 

to find the relationship 

 I I



 
 

 
      

 
 I I P ; (88) 
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This is the gauge-covariant gradient as found in equation (74). 

This derivation in gauge theory reveals several characteristics of the derivative 

coupling terms.  First of all, it recognizes P as the gauge potential.  Specifically from 

equation (87), we see that the matrix of derivative coupling terms is the sum of the 

gradients of the rotation parameters multiplied by their respective generators.  Thus the 

DCTs are directly connected to the rotations between electronic eigenfunctions at 

different points in nuclear space.  Since unitary generators are antihermitian, this 

relationship shows that P is antihermitian (or antisymmetric in the case of real 

wavefunctions) as well.  Its antisymmetry implies that the diagonal elements, i.e. 

|i i    , are zero, which further implies the gradient of a real wavefunction has no 

projection onto the wavefunction itself. 

The non-adiabatic transformation 

The purpose of our introduction to gauge theory was to find the non-adiabatic 

transformation to make equation (74) more easily solvable, i.e., to transform it into an 

equation in which P  is diagonal (since P  is antisymmetric, its diagonal form will 

actually be the zero matrix).  We can use the form of P  in terms of rotations (equation 

(87)) to find that transformation.  The transformation is position dependent, and will 

vary based on nuclear coordinates. For that reason it is categorized as a local gauge 

transformation [27]. The effect of applying this transformation everywhere on the 

nuclear manifold will be to align all the internal spaces; that is, it will remove the nuclear 

coordinate parameterization from the electronic wavefunctions.  There will still be an 
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arbitrary but constant rotation common to all the functions, similar to the choice of a 

potential energy offset.  Since this part of the transformation is common to the entire 

manifold, it is a global gauge transformation [27] and can be set arbitrarily.   

Consider a global gauge transformation †U on the vector  I R I  [27]: 

        † † †

I I IR R R         U I U I UU I  (89) 

where    †

I IR R U .  The nature of the del operator has not changed, and so it is 

globally gauge invariant.  Now consider a local gauge transformation,  † RU : 

 

            

         

† † †

†

I I

I I

R R R R R R

R R R R

 

 

     

    

U I U I U U

U I U I
 (90) 

Note that        †

I IR R R     U I I , and so a gauge transformation changes 

the nature of the del operator, and hence the nature of the Schrödinger equation.  Thus 

the bare del operator is not gauge-covariant.  Now consider instead the transformation 

of the vector     IR R

  I P : 

 

      

                  

†

† †

I

I I I

R R R

R R R R R R R R







 

   

      

U I P

U I U I U P U
 (91) 

If we define  

             † †R R R R R R 

  P U P U U I U  (92) 

then we see that 

            †

I IR R R R R 

       U I P I P  (93) 
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and the form of the gauge-covariant gradient operator is unchanged by the 

transformation.  If we apply the above local gauge transformation to equation (74) we 

find 

  
21

0
2

I

IE
m




 

 
       
 
 I P ε I  (94) 

and indeed, the nature of the equation has not changed.  For these equations to be put 

into a form in which they are most easily solved, we require that P 0 .  From equation 

(92), this condition implies that  

       R R R

  P U I U  (95) 

Combining this equation with the form of P  from (87)  leads to the equation 

       ' '

, ' ,

m m

m m

R R R 
 

     X U I U  (96) 

Since  RU  is unitary it can be expressed as a sum of exponentiated parameter-

generator products [34], 

    exp m m

m

R R   U Χ  (97) 

and equation (96) can be rewritten as  

      ' '

, ' ,

exp expm m m m m m

m m m

R R R 
 

              X Χ I Χ  (98) 

If  P  is calculated, the  m R 
 are known parameters used to solve for the  m R .  The 

del operator on the right-hand side of the equation pulls out the derivatives of the 

arguments of the exponential function yielding 
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       

       

, ,

, ,

exp expm m m m m m m m

m m m

m m m m

m m

R R R R

R R R R

 
 

 
 

   

 

 



 



              

       

  

 

X Χ X Χ

X U X U
 (99) 

While it is true that the set 
m
X  and the set 

m
X span the same space, they are not 

necessarily the same set, and hence we cannot conclude that the parameters 
m  and 

m   

are the same for all m .  In this case, there is no clear path to discover the parameters 

which will transform P  to 0 , and an approximate method must be used [27].  The 

exception to this case is when only two surfaces are coupled, and hence only one 

generator and parameter are present,and we can indeed conclude that 

      (100) 

is the condition for which the unitary gauge transformation will yield  P 0 for all  . 

Consider the simple example of coupling a two-level system with only one 

nuclear coordinate.  The DCT matrix is 

   1 2

1 2

1 2

0 0 1

0 1 0

R

R

R

R
 

 
 


 




   
         

P  (101) 

while the unitary transformation is 

    
0 1

1 0
R R

   
   

  
U exp  (102) 

By equation (87), we know that 1 2R R
   

 
  , and hence the correct parameter 

for the local gauge transformation satisfies the equation [29] 

    
0

0 1 2

R

R

R

R dR R   


   (103) 
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( 0R  is chosen arbitrarily, and determines the global gauge.) In this manner, the local 

gauge transformations can be determined on the nuclear manifold, leading to solvable 

equations of the form 

 21
0

2

I

IE
m


 

 
      
 
 I ε I  (104) 

where 2

I  and IEI  are diagonal, but ε  is not.  It is to this end that finding the 

derivative coupling terms, i.e. |i j    , is important. 

 

Wavefunctions and the Graphical Unitary Group Approach 

In order to perform a calculation of molecular energy properties, we must find a 

suitable representation of the Hamiltonian.  Let us assume that a suitable set of one-

electron molecular orbital basis functions (MOs) has been furnished by an established 

Multi-Configuration Self Consistent Field (MCSCF) procedure [20] [35].  From these MOs, 

we produce a basis of CSFs, which are antisymmetric many-electron functions, in which 

the electronic Hamiltonian and its wavefunctions will be represented.  Our basis of 

choice, which is the one used in the COLUMBUS programs, is the Gel’fand-Tsetlin basis 

[7] [8] [9] [10] [36].  The procedure to build this basis is known as the Unitary Group 

Approach (UGA).  This section will present the construction of the Gel’fand-Tsetlin basis 

via UGA, its value, and how it is implemented. 
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The Unitary Group 

 Irreducible Representation 

Many of the characteristics of a group are discoverable in abstract or operator 

form; however, often it is necessary to use a matrix representation of the group to 

better understand its nature.  For any given group there are several matrix 

representations.  For example, the group SU(2) has a defining representation on 2 2  

matrices, but has a regular representation in 3 3  matrices [34]. 

The most useful matrix representation we will encounter for our purposes will be 

the irreducible representation, or irrep.  For a non-abelian group, not all elements 

commute and hence not all can be diagonal matrices in the same representation.  The 

irreducible representation is the basis in which all group operators are block-

diagonalized.  While not as advantageous as a purely diagonal representation, the block-

diagonal form does have the advantage of reducing the effort of n n  matrix 

diagonalizations to separate1 1 , 2 2 , 3 3  etc. diagonalizations (n.b. these separate 

blocks are also called irreps [37]). 

Building the CSF space 

For a given molecular system, we assume a collection of N indistinguishable 

electrons and, for each, a vector space V of n  orthonormal orbitals.  The space in which 

such a system exists is the thN -rank tensor product of ,V  ,NV   which is Nn  

dimensional [38].  This is known as the carrier space, and is conceptualized in Figure 2.  

Given these two groups of objects, i.e. electrons and orbitals, there are two distinct 
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ways to enumerate our basis.  In the first place, we could leave the orbitals fixed and 

permute the electrons among them.  In the second place, we could leave the electrons 

fixed and rotate the orbitals around them.  The latter method is the Unitary Group 

Approach, while the former is the Symmetric Group Approach (SGA) [39].  A discussion 

of the SGA, not as relevant to the path of this discussion, can be found in Appendix J. 

 
 

 

Figure 2. Visualization of carrier space of N electrons and n orbitals 
 
 
 

Generators of the Unitary Group 

The Unitary group is of particular importance to the field of Quantum Chemistry 

because of the manner in which the second-quantized Hamiltonian is constructed.  The 

anticommutation relation [40] of the raising and lowering operators from definition (24) 

NV   

1

 

n  

2  

1  

n  

2  

1  

n  

2  

1V

 
2V  

NV
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  
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  † † † ˆˆ ˆ ˆ ˆ ˆ ˆ, 1r r r r r ra a a a a a         (105) 

(see Appendix C) lead to the following commutation relation between the operators 

introduced in equation (30) [34]: 

 

 

 

    

† †

† † † † † †

† † † †

' '

† † † †

'

, ,

,

rs tu r s t u

r s t u r s t u t u r s

r st t s u t ur r u s

r u st r t s u t s ur

E E a a a a

a a a a a a a a a a a a

a a a a a a a a

a a a a a a a a
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 


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 
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
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 
  
 
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
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

 (106) 

Since raising operators commute with each other, and lowering operators do as well, 

the terms left under the summation sum to zero, leaving 

  ,rs tu ru st ts urE E E E    (107) 

We will show that these operators represent generators of the Unitary group. 

Let U be an element of the group  nU (the set of all n n  unitary matrices).  

Unitary matrices obey the bilinear condition 

 † U U 1  (108) 

If we let 

  expU K  (109) 

Then we have the condition from equation (108) 

        
† †exp exp exp exp K K K K 1  (110) 
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Since U and †U commute, so do K  and †K , and 

      † †exp exp exp K K K K  (111) 

which leads to the condition 

 † † 0   U U 1 K K  (112) 

Element-wise, this condition indicates that 

  * 0ij ji K K  (113) 

or that K is antihermitian.  In the most general case K will be complex, and can be split 

into an antisymmetric real part and a symmetric imaginary part: 

 i K A S  (114) 

Without further restriction, this indicates  
2

2

n n
 parameters for A  and 

2

2

n n
 

parameters for S , or a total of 2n  parameters for K .  This is the same number of 

parameters as ( , )GL n R , the group of all n n  non-singular real matrices [34].  

Consequently, the generators of  U n
 
are linear combinations of the generators of 

( , )GL n R , and we can use either set of generators to construct U .  In the most general 

formulation, a unitary operator can be constructed from generators as 

 rs rs

rs


 

  
 
U exp E  (115) 

(Cf. equation (79); these formulations are not equivalent; that is, the same parameters 

used in either case will lead to different results.  However, they are both equally valid .)  
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Since the argument of the exponent must be antihermitian, one of the following 

restrictions must apply: 

1. The rsE are antihermitian (i.e., generators of  U n ), while the rs  are 

unrestricted real 
 

2. The rsE are split into a set of symmetric and a set of antisymmetric matrices; the 

former take imaginary parameters and the latter take real parameters 
 

3. The rsE are unrestricted (i.e. generators of ( , )GL n R ) while *

rs sr    

We shall choose to use the ( , )GL n R generators which are unrestricted; thus we will 

confine ourselves to condition 3.  The generators 
ijE of ( , )GL n R are sparse matrices 

with only one non-zero entry; specifically, 

  ij ik jlkl
E    (116) 

(Consequently, the generators associated with A would have the form ij jiE E  and 

those associated with S  would have the form ij jiE E .)  For example, in matrix form, 

the generator 2,3E  would be 

 2,3

0 0 0

0 0 1

0 0 0
E

 
 
 
 
 
 

 (117) 

It is clear through matrix multiplication in this representation that  

 ij kl il ikE E E   (118) 

and hence the generators obey the commutation relation 

 ,ij kl il jk jk ilE E E E       (119) 
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This is the exact commutation relation we saw in equation (106), and thus we see that 

the second-quantized Hamiltonian applied to a system with n  orbitals is constructed 

from the generators of  U n .  This connection is why the unitary group will be so 

important in outlining a basis in which to express the Hamiltonian; that process is the 

UGA [38].  Note that the generators in equation (30) were summed over spin, and so the 

unitary generators do not distinguish spin-up from spin-down.  We can also create the 

operators [38] 

 †
n

r r

r

E a a    (120) 

for functions of spin rather than for functions of electronic coordinate.  They obey the 

same commutation relation; however, since   and   can be selected from two spin 

states, these operators correspond to the generators of  2U .  The complete space in 

which we represent the Hamiltonian for n  orbitals is the direct product space of the 

spatial functions and the spin functions,    2U n U , which is a subgroup of  2U n .   

Note that the spin index necessarily remains in the generators from which the 

spin-orbit Hamiltonian is constructed (see equations (29), (30)).  The spin-orbit 

Hamiltonian is constructed out of generators from  2U n , and the CSFs span an irrep of 

a subgroup of this space.  

Young frames 

Before discussing the representation of the unitary group, it is necessary to make 

a short aside to the subject of Young frames, which will provide a useful labeling 
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scheme.  Every integer N  can be partitioned a number of ways.  For example, 3 can be 

partitioned into 3, 2+1, or 1+1+1.  Table 1 enumerates the partitions of the first five 

integers. We can also use boxes to indicate the partitions, as shown in Figure 3.  These 

box figures are called Young Frames [39]. To prevent redundancy when creating these 

frames, it is necessary to impose the rule that a row be equal to or shorter than the row 

above it, and each row be left-justified.  Figure 4 is an example of a Young frame which 

is not allowed.  

These frames were first used to label irreps of the symmetric group; however, 

because of their close connection, they can also be used to label the irreps of the 

unitary group, as the succeeding discussion will reveal.   

 
 

Table 1. Partitions of Integers 1 through 5 

 

1 2 3 4 5 

1 2 3 4 5 

 1+1 2+1 3+1 4+1 

  1+1+1 2+2 3+2 

   2+1+1 3+1+1 

   1+1+1+1 2+2+1 

    1+1+1+1+1 
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  5     4+1   3+2           

               3+1+1  2+2+

1 

  

                       

                   1+1+1+1+1 

Figure 3. Young frames for partitions of 5 
 
 
 

   

   

Figure 4. Illegal Young frame 
 
 
 

Irreps of the unitary group 

The group  1U n  is contained in  U n , as each group contains the generators 

of the smaller groups.  As an example, the generators of  2U   

 
1 0 0 1 0 0 0 0

, , ,
0 0 0 0 1 0 0 1

       
       
       

 (121) 

can be expressed in  3U  as 

 

1 0 0 0 1 0 0 0 0 0 0 0

0 0 0 , 0 0 0 , 1 0 0 , 0 1 0

0 0 1 0 0 1 0 0 1 0 0 1

       
       
       
       
       

 (122) 

Thus we have the group subduction chain 
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          1 2 3 ... 1U U U U n U n       (123) 

It should be clear that the unitary group  U  contains all these,  
n

U n .   

Each unitary group  U n  is a continuous group and will have uncountably 

infinite elements. Even though the defining representation [34] of the group  U n  are 

the n n  matrices, it can be represented by infinitely large matrices with an infinite 

number of finite irreps, as it is a continuous but compact group [38].  The irreps of 

 U n  can be labeled with Young frames of at most n  rows [38].  Figure 5 shows the 

first few irreps of the unitary group and the subgroups.  

The Gel’fand Tsetlin basis 

Weyl tableaux 

In the UGA we will use Weyl tableaux to label eigenfunctions [38], which are 

Young frames whose boxes are populated with tokens, (usually numbers, but it must be 

a set that has definite ordering), according to the following rules: 

1. The number must be equal to or greater than the number to the left 

2. The number must be strictly greater than the number above 

In the UGA, the boxes will represent electrons and the numbers will represent orbitals 

(or spin states), thus mimicking the indistinguishability of the electrons. Since the 

numbers represent orbitals, it would seem this system allows an orbital to be assigned 

to more than two electrons, violating the exclusion principle; however, it will be 

revealed shortly that the principle of antisymmetry prohibits such Weyl tableaux.  
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Figure 5. Young frame representation of the irreps of the Unitary Group 
 
 
 

Spin States 

As noted previously, the spin generators are those of  2U ; from Figure 5 it is 

clear that the spin irreps will only be represented by one- or two- row frames.  Since 

there are only two spin states, spin-up and -down, there will also be only two tokens, 1 

and 2, or  and , to distribute among the boxes.  Figure 6 shows as an example the 

possible spin states for a four- electron system.  Note that each box in the top row 

represents adding spin 1/2 to the total, while each box in the bottom row subtracts spin 

1/2.  Thus the first column of Figure 6, the totally symmetric irrep, represents the 

1
24 2   spin state or quintet; the second column represents the triplet, and the third  

             … 

               

            …  

             

               

               

              … 

                 

               

               

             … 
             

               

               

               

 1U

 

 1U

 

 2U  

 3U

 

 4U  
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  2S     1S     0S   

2sm   1 1 1 1        

             

             

1sm   1 1 1 2  1 1 1    

       2      

             

0sm   1 1 2 2  1 1 2  1 1 

       2    2 2 

             

1sm    1 2 2 2  1 2 2    

       2      

             

2sm    2 2 2 2        

Figure 6. Four-electron spin states 
 
 
represents the singlet.  Within the framework of the total spin, the system can have a 

projection onto the z-axis from S  to S  in integer increments.  The z spin component 

of a state can be calculated by adding 1/2 for each 1 and subtracting 1/2 for each 2, and 

so in Figure 6 we see the spin-structure we expect out of a four-electron system.  Note 

that, since in a given Weyl tableau for  2U there are two rows and two numbers, any 

column with two rows must have a 1 in the top box and a 2 in the bottom.  Thus the 

only variability in the sm  projection is within the single-box columns.  For this reason, 

each multiplet does not have a unique frame; that is, any number of two-boxed columns 

could be added to the Young frame and the same multiplet would result.  See Figure 7 

for an example of various doublets.  If we were only interested in spin states, we could 
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restrict ourselves to single-row irreps, which happen also to be the irreps of  2SU  

[38]; nevertheless, we will find the complete  2U irreps invaluable in choosing the 

correct irreps for the spatial state, as we will see shortly.  Furthermore, we can use 

these irreps to label the nodes on the genealogical construction graph, Figure 8 (see also 

Appendix I).  The genealogical construction graph shows the ways, given an N - electron 

spin function, to construct 1N  -electron spin functions.  A number of paths (always 

stepping to the right) can be taken from the origin to each node; each path represents a 

different way to couple angular momenta to get to the final state.  While the Young 

frames label the nodes, they give no indication of the path taken to that node.  

Appendix J gives the relationship between paths and spin functions. 

 
 

             

             

Figure 7. Different Young frames all representing doublets 
 
 
 

Spatial States 

Recall that the wavefunction should transform as a member of an irrep of a 

subgroup of  2U n  since there are 2n  total spin-orbitals.  Further, if we restrict the 

total electronic wavefunction to be made up of antisymmetric tensor products of 

occupied spin-orbitals, it must reside completely in the totally antisymmetric irrep of

 2U n , which is represented by a single column of N  boxes.  We have, however, 
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Figure 8. Tableaux-labeled genealogical spin construction graph [41] 
 
 
 

restricted our calculations to the    2U n U  subgroup (by restricting spin coupling), 

and so the irreps must be in the subduction chain from the antisymmetric irrep of 

 2U n  to that group. This results in a spin-dependent Gel’fand-Tsetlin basis.  This will 

only be the case when the spatial irrep and the spin irrep are mutually conjugate Young 

frames; that is, the frames interchange numbers of rows and columns [38].  Figure 9 

shows an example of mutually conjugate Young frames that would result in a legitimate 

antisymmetric wavefunction.  Since the spin irreps can have no more than two rows, 

this antisymmetry condition requires that the spatial irreps can have no more than two 

columns.  This also means a number will appear no more than twice in the Weyl tableau 

electrons 

1 2 3 4 5 

spin 

0 

1/2 

1 

3/2 

2 

5/2 
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spatial irrep; that is, an orbital will be assigned to no more than two electrons.  Since the 

spatial and spin Young frames must be mutually conjugate, the spatial Young frame 

gives the spin Young frame, and so it will be unnecessary to display both; the spatial 

frame will be sufficient.  We will, however, lose the z-projection fo the spin, which will 

be important for constructing spin-orbit wavefunctions and calculating their properties.  

Fortunately, an alternative simple accounting system for sm  will be considered later. 

 
 

      

       

      

Figure 9. Mutually conjugate Young frames 
 
 
 

An example: two electrons and two orbitals 

To help solidify the meaning of the Weyl tableaux, a simple example is in order.  

Consider the case of two electrons in two orbitals.  We will work in the subgroup 

     2 2 4U U U  .  The possible spin states are a singlet and a triplet: 

     or      

        

where we have retained the spin frames for illustration.  For the singlet, the only Weyl 

tableau allowed is 

α 

β 
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This tableau represents a totally antisymmetric spin state in which both electrons have 

been given different spins.  This is the familiar function 

  1

2
   (124) 

where position indicates electron dependence (i.e., the first function in a product is of 

electron 1, the second is of electron 2, etc).  For the triplet, there are three Weyl 

tableaux: 

α α  α β  β β 

 
These tableaux represent totally symmetric spin states.  The first, two spin-ups; the 

second, a mix; and the third, two spin-downs.  These correspond to the spin functions 

  1

2



 



  (125) 

Since there are only two orbitals, the spatial tableaux are the same as the spin tableaux, 

and represent analogous functions, but with orbitals rather than spin states .  When 

paired, they result in the following states: 

       Singlets   Triplet        

 1
1 12

     1 1 
 

α   1 
 

α α  1
1 2 2 12

      

          β   2           

                        

  1
1 2 2 12
      

 

1 2 

 
α   1 

 
α β   1

1 2 2 12
      

           β   2           

                        

 1
2 22

      2 2 

 
α   1 

 
β β  1

1 2 2 12
      

          β   2           
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These are precisely the antisymmetric wavefunctions we expect to find for the 2-

electron, 2-orbital system; thus these tableaux label a spin-adapted basis for the system. 

In this example the antisymmetry was carried completely by either the spatial or 

the spin piece, with the other being symmetric.  The general case is not this clean, as 

pairs of tableaux which contain neither single rows nor single columns are, on their own, 

neither symmetric nor antisymmetric, yet their product must be completely 

antisymmetric.  As an example, a 3-electron, 2-orbital system has two doublets (i.e., two 

paths from the origin in Figure 8), 

 

 

 

 

 

1

6

1

6

1

2

1

2

2

2

  

  

 

 

    


    

 




 (126) 

corresponding to the Weyl tableaux 

α α and α β 

β   β  

 
none of which have definite parity.  A product of such tableaux is not as simple as a 

product of a spatial and a spin determinant, but rather is a linear combination of 

determinants which is antisymmetric.  Shavitt has developed a correspondence 

between the more complicated Weyl tableaux and Slater determinants; [42] may be 

consulted to see how to express CSFs in terms of Slater determinants. 
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The Subduction Chain 

As stated previously in equation (123), each unitary group contains all unitary 

subgroups in the subgroup chain.  Each Weyl tableau represents a unique subduction of 

an element of  U n  to  1U .  The subduction of a tableau in  U n  to  1U n

requires removing from the tableau any boxes assigned to the thn  orbital.  Subsequent 

subduction to  2U n would then remove any boxes assigned to the  1
th

n  orbital, 

and so forth [38]. 

Consider  the following Weyl tableau in a seven-electron, seven-orbital system, 

2 3 

3 4 

5 5 

6  

 

which is a doublet.  The tableau resides in  7U , which has tableaux of no more than 

seven rows.  To subduce to  6U , we must remove any boxes assigned to the seventh 

orbital.  Since there are none, this tableau remains unchanged in  6U .  Following the 

prescription above, this tableau labels the subduction chain in Figure 10.  

Paldus Tableaux 

Each frame in the chain can be described by  

1. the number of two-element rows ( = a ) 

2. the number of one-element rows ( = b ) 

3. the number of zero-element rows ( = c ) 
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2 3   2 3   2 3   2 3   2 3   2      

3 4  3 4  3 4  3 4  3        

5 5  5 5  5 5             

6   6                 

 7U    6U    5U    4U    3U    2U    1U  

Figure 10. Subduction chain for an example doublet Weyl tableau where N=7, n=7 
 
 
 
This last number is calculated to be the number of possible allowed rows in the 

subgroup (i.e., n  rows for  U n ) minus the number or rows in the Young frame.  Thus 

we can label the above subduction chain with the numbers a, b, and c in order of 

decreasing orbital number (see Table 2).  The orbital number column can be discarded 

since it is the sum of a, b, and c, and we create the more simplified table, a Paldus 

Tableau, as shown in Figure 11 [42]. The Paldus Tableau is equivalent to the subduction 

chain of Figure 10, and is hence equivalent to the original Weyl Tableau.   

 
 

Table 2. Subduction chain from Figure 10 in table form 
 

Orbital a b c 

7 3 1 3 

6 3 1 2 

5 3 0 2 

4 2 0 2 

3 1 1 1 

2 0 1 1 

1 0 0 1 

0 0 0 0 
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3 1 3

3 1 2

3 0 2

2 0 2

1 1 1

0 1 1

0 0 1

0 0 0

 
 
 
 
 
 
 
 
 
 
 
  

 

Figure 11. Paldus Tableau corresponding to the subduction chain in Figure 10 
 
 
 

Gel’fand Tableaux 

Finally, we can alternatively label each frame in the subduction chain as a row of 

numbers whose length is equal to n .  Starting from the left, we insert a 2 for every two-

element row, followed by a 1 for every one-element row, ending with zeros.  This is very 

closely related to the Paldus Tableau; for example, the top row of the Paldus Tableau in 

Figure 11, indicating three 2s, one 1, and three 0s, would have the form 2 2 2 1 0 0 0.   

When each row is thus labled, the result is a Gel’fand tableau.  The Gel’fand 

tableau in Figure 12 is equivalent to the Paldus tableau in Figure 11.  Thus each Weyl, 

Paldus, or Gel’fand tableau represents a specific CSF.  A Young frame, a Paldus tableau 

top row, or a Gel’fand tableau top row represents a family (or irrep) of CSFs for a  system 

of n  orbitals, N  electrons, and a specific multiplet.   

 Ordering tableaux 

 All of the tableaux in this irrep can be ordered.  Each tableau set has its specific 

ordering rules, but those for the Gel’fand tableau are most intuitive.  The top row will be  
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2 2 2 1 0 0 0

2 2 2 1 0 0

2 2 2 0 0

2 2 0 0

2 1 0

1 0

0

 
 
 
 
 
 
 
 
 
 
 

 

Figure 12. Gel’fand tableau corresponding to the subduction chain in Figure 10 
 
 
 
the same for the entire irrep.  The elements of each subsequent row must follow the 

betweenness condition; that is, each must fall inclusively between the two elements 

situated in the row directly above it.  The Gel’fand tableaux can be ordered according to 

the following rule:  If tableau A and tableau B have the first k  rows in coincidence, then 

the one with the greater number of 2s in the  1
th

k  row is greater; if the number of 2s 

in the  1
th

k  row is in coincidence, the one with the greater number of 1s in that row 

is the greater tableau. Figure 13 shows the order of the Gel’fand 

tableaux for the system of three orbitals and four electrons in a singlet, followed by the 

Paldus tableaux and Weyl Tableaux, including the subduction chain.  They are labeled 

above lexically.  The basis, thus ordered and spin adapted, is the Gel’fand Tsetlin basis 

[38].   This is the basis COLUMBUS uses to calculate the CI wavefunctions and the 

density matrices upon which analytic gradients and DCTs will be built, and shall be the 

basis we discuss in the remainder of this paper.  In the next section, we will discuss how 

this basis is used in the graphical approach specifically used in COLUMBUS.  



56 

 

1 2 3 4 5 6 

 

2 2 0 2 2 0 2 2 0 2 2 0 2 2 0 2 2 0

2 2 2 1 2 1 2 0 2 0 2 0

2 2 1 2 1 0

2 0 1 2 0 1 2 0 1 2 0 1 2 0 1

2 0 0 1 1 0 1 1 0 1 0 1 1 0 1

1 0 0 1 0 0 0 1 0 1 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0

           
           
           
                      

       
       
       
       
       
       

2 0 1

1 0 1

0 0 0 1

0 0 0 0 0 0

   
   
   
   
   
   

 

                   

 1 1  1 1  1 2  1 1  1 2  2 2  3U  

 2 2  2 3  2 3  3 3  3 3  3 3  

                   

 1 1  1 1  1 2  1 1  1 2  2 2  2U  

 2 2  2   2            

                   

 1 1  1 1  1   1 1  1      1U  

Figure 13. Gel’fand Tsetlin Basis for N=4, n=3, singlet 
 
 
 

Distinct Row Tables 

Each line in the Paldus tableau format, or each shape in the Weyl tableau format, 

in Figure 13 occurs often in an entire N-electron basis where n N .  By taking 

advantage of these redundancies, we can greatly reduce the size of the displayed basis 

information [43].  The Distinct Row Table (DRT) contains only as many rows as there are 

distinct rows in the set of Paldus tableaux, with a fixed number of columns.  For Figure 

13, there are eight distinct rows; while there is not much savings in notation (and thus  
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disk space) at this level, the DRTs of larger bases of realistic problems are much smaller 

than their Paldus or Weyl tableaux counterparts.  For example, a 30-orbital, 10-electron 

singlet system has over four million CSFs, but the DRT has only 511 rows [43].  Table 3 

shows the DRT for the basis in Figure 13.  The first column label, j,  gives the index of 

the one-electron basis function, which is also the unitary subgroup to which the row 

belongs.  The second column label, k ,  gives a unique index to each row.  The next three 

column labels, ka , kb , and kc , label the row itself using the Paldus step numbers (see 

Table 2).  

The rest of the DRT essentially shows two sets of data:  how each row is 

connected to the next, and how each row is lexically ordered with respect to others.  To 

understand the first point, one must see that, in addition to removing an orbital, there 

 
 

Table 3. DRT for three-orbital, four electron singlet basis 

j   k   
ka  kb  kc   

0kk  1kk  2kk  3kk   
1ky  2ky  3ky   

kx  

3  1  2 0 1  2  3 4   1 3  6 

                  

2  2  2 0 0     5    0  1 

  3  1 1 0   5  6  0 0 1  2 

  4  1 0 1  5  6 7   1 2  3 

                  

1  5  1 0 0     8    0  1 

  6  0 1 0   8    0 1 1  1 

  7  0 0 1  8     1 1 1  1 

                  

0  8  0 0 0           1 
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are four possible electron-related actions, indexed by the step number ,d to subduce 

one row to another:  

1. Remove  no electrons, spin remains the same ( 0d  ) 

2. Remove an unpaired electron, spin goes down ( 1d  ) 

3. Remove a paired electron, spin goes up   ( 2d  ) 

4. Remove a pair of electrons, spin remains the same ( 3d  ) 

(Because only four such actions are available, a CSF can, in addition to the tableaux in 

Figure 13, be identified by the total spin and the order of these steps taken in the 

subduction chain.  This will be useful in calculating elements of spin-orbit generators 

later on.)  The next four columns of the DRT show to which row the given row subduces 

via one of the four subduction steps listed above.  These indices are called the 

downward-chaining indices [43].  For example, row 1k   subduces to row 2 via a 0d 

step; to row 3 via a 2d  step; and to row 4 via a 3d  step.  A 1d   step is not allowed 

from row 1, because it has no unpaired electrons.   The final five columns are labeled by 

counting indices.  The final column of the DRT gives the weight, labeled by ,kx  and 

counts the number of distinct subtableaux that have that row at the top.  The y indices, 

labeled by the step vector ,d  count the number of subductions that occur lexically 

before the given subduction.  There is no column for 0ky  since the 0d  step always has 

the greatest weight.  For example, row 1 subduces to row 2 via a 0d  step in one 

tableau.  Row 1 subduces to row 3 via a 2d  step in two distinct Paldus subtableaux; 

they are still weighted lower than only one tableau, so 2ky also counts 1.  Finally row 1 
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subduces to row 4 via a 3d  step in three distinct tableaux, which are weighted lower 

than the previous three tableaux, and so receives a count of 3.  This can be seen by 

comparing the DCT in Table 3 with the lexically ordered tableaux in Figure 13.  Note that 

in this form of counting, a row which occurs in multiple Paldus tableaux but whose 

subduction chain is identical is only counted once.  For example, the subduction 

   1 0 0 0 0 0 occurs in three different Paldus tableaux in Figure 13, but is only 

counted once in the DRT.   

The Shavitt Graph 

While the highly-ordered nature of the DRT is useful for programming, it is 

difficult to comprehend.  The Shavitt graph is a compact, graphical representation of the 

DRT which is more useful for human-readability [43].  Figure 14 shows the Shavitt graph 

corresponding to Table 3.  Each row is represented by its number in a circle.  The rows 

 

Figure 14. Shavitt graph N=4, n=3 singlet 

1 

2 3 4 

5 6 7 

8 

3 

 

2 

 

1 

 

0 

j  

a=      2           1        1     0    0 
b=      0           1        0     1    0 

6 

1 

1 1 1 

1 

2 3 

3 
1 0 

0 
0 

0 
0 0 

1 
0 

1 
2 

tail 

head 



60 

 

k  are distributed in a grid according to the values of ,j  a, and b.  To the left of each 

circle is the x  counting index.  Each line or arc represents a valid subduction, labeled by 

its arc weight, which is the appropriate y index.  The d  index is represented by the slope 

of the arc.  Each walk from tail (bottom) to head (top) represents one of the CSFs. Figure 

15 highlights the six walks that represent the CSFs for the example basis.  Each walk is 

assigned a weight by the sum of the arc weights it traverses; thus between a pair of 

walks, the higher weight (lower number) is assigned to the walk that begins with the 

left-most arc [43]. 

Representing the Non-Relativistic Hamiltonian Elements 

Elements of the non-relativistic second-quantized Hamiltonian are calculated as 

 1
2

, , , ,

ˆ ˆ
m n m rs n rs m rstu n rstu

r s r s t u

H E h e g         (127) 

 
 

 

 Figure 15. CSFs of N=4, n=3 singlet basis represented by walks 
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where the bra and ket are CSFs from the Gel’fand-Tsetlin basis.  This formulation shows 

that the one-and two- electron integrals act as coefficients, and it is fundamentally the 

representation of the unitary group generators in the Gel’fand-Tsetlin basis we are 

calculating.  The ˆ
ijE can be divided into three types of operators: 

1. Diagonal or weight operators where i j  

2. Upper triangular or raising operators where i j  

3. Lower triangular or lowering operators where i j  

The CSFs are eigenvectors of the weight operators, with the relationship 

 ˆ
m ii n mn iE n    (128) 

where in  is the occupancy of the thi orbital.  The raising and lowering operators are 

adjoints of one another, so we will only consider raising operators here.  There are 

several conditions which must be fulfilled so that the product ˆ
m ij nE   be non-zero; 

the equivalent of these on the Shavitt graph is that the two walks m  and n  must 

be joined from tail to the 1i   level and from the thj level to the head [43].  Between 

these two levels, the walks form a loop, for which n must always be to the right.  

Figure 16 shows an example of a non-zero loop value for the raising operator 21Ê in the 

example basis.  The walks 2  (solid) and 3  (hashed) are joined at levels 0 and 2 with 

2  on the left of the loop.  Their common walk is represented by the dotted line. 
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Figure 16. Example non-zero unitary generator element 
 
 
 

To calculate the loop value, the loop is divided into segments.  Each segment is a 

portion of the loop sitting between two j -indices, e.g.,  1,j j ,  , 1j j  ,… 1,i i .  A 

segment is given an index k  which is equal to the top index on the Shavitt graph or the  

latter in the pair  , .j k   In the example in Figure 16, there are two sections,  0,1  and 

 1,2 , shown explicitly in Figure 17.  Figure 18 shows the seven different segment types, 

kQ .  Just like the generators, the segments can be classified as weight (W), raising (R), or 

lowering (L), and further identified as being unjoined (no overbar), joined at the top 

(overbar), or joined at the bottom (underbar).  Again in these Figures, the bra is solid 

and the ket is hashed.  Additionally, each segment can be identified by the step number 

of the bra and ket, 
'

kd  and kd , respectively, (where the primed quantity indicates the  

1 

2 3 4 

5 6 7 

8 

21
ˆ2 3E
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Figure 17. Segments of the loop in Figure 16 
 
 
 

 

Figure 18. The different segment types, weight (W), raising (R), and lowering (L) 
 
 
 

bra), and the values of b  at the top of each segment, 
'

kb  and kb .  As an alternative to 

this last requirement, we may specify the difference in the kb  values in addition to only 
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one of the kb  values; Shavitt chooses to specify kb and define 'k k kb b b    [42].  

Segments with the same ,kQ  ' , ,k kd d  and kb  have congruent shapes; these 

parameters are collected into a single symbol 

  ; ' ;k k k k kT Q d d b   (129) 

called the segment shape symbol.  For example, the shape symbols for the segments in 

Figure 17 are 

 
 

 
1

2

;3,1;1

;1,3;0

T R

T R




 (130) 

 The value of a segment,  ,k kW T b  is completely determined by its shape symbol and 

kb .  The matrix element of the unitary generator between the two CSFs is the product 

of these segment values: 

  ˆ' ,
i

ij k k

k j

m E m W T b


  (131) 

The values of  ,k kW T b are given in Table III of [42].   

Matrix elements of generator products ( ijkle ) are calculated in a similar although 

more complicated manner [42]. 

The spin-orbit Hamiltonian elements 

Adding the spin-orbit operator to the Hamiltonian does not perfectly fit into the 

above calculations for two reasons; first, the generators in that operator are not spin-

free; and second, the Shavitt graphs require more than one total spin irrep.  We shall 

present Yabushita’s solution to the latter problem first [11]. 
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Multi-spin Shavitt graph 

When introducing spin-orbit coupling, our example system is incomplete; 

although it contains singlet CSFs, these could now couple with triplet or even higher 

CSFs, which must be included in the Shavitt graph.  Figure 19 shows this graph, with 

exclusively triplet arcs and nodes marked with hashes (see Figure 14).  Unlike the single-

spin Shavitt graph, this graph now has two heads, one for each possible total spin.  This 

means that Hamiltonian elements between CSFs of different spins will not create closed 

loops.  In order to calculate coupling coefficients between CSFs of different spins, 

Yabushita devised a scheme [11] where an additional index is added to the top of the 

graph and the closed-loop formalism is used.  This can be thought of as adding an 

additional artificial electron and orbital to the Shavitt Graph (see Figure 20), creating an 

irrep of  1U n that will subduce to both the singlet and the triplet.  In this example, 

the left and right hashed arcs in Figure 20 represent the subductions 

     

      

      

and 

     

      

      

respectively. 
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Figure 19. Mixed-Spin Shavitt graph for the N=4, n=3 singlet and triplet basis 
 
 
 

 

Figure 20. Mixed-spin Shavitt graph for the N=4, n=3 singlet and triplet basis with 
artificial U(n+1) head 
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Spin-orbit generators 

Now that loops between CSFs of different spins are built, we can calculate the 

matrix elements of the generators.  The spin-orbit generators defined in (30)  are 

different from the spin-free generators used in the previous subsection; nevertheless, 

the spin-orbit generators can be expressed in terms of the spin-free generators [44].  To 

understand this process, we first note that each CSF is properly identified by its 

subduction steps (d ), total spin ( s ), and z-projection of spin ( sm ).  As mentioned 

previously, the subduction chain can be identified by the order of steps, d ,  taken.  Thus 

we can identify a CSF by the ket 

 d S M  (132) 

For example, the CSF 1  in Figure 13 may be represented by  

 

0

1 3 0 0

3

d S M

 
 

    
 
 

 (133) 

(since the example system is a singlet, the z-projection is necessarily zero.  For non-zero 

spins, the physical, two-column Weyl tableaux do not specify that projection without 

their accompanying two-row spin Weyl tableaux).  Thus the matrix element of the spin-

orbit Hamiltonian is evaluated as 

 
, , ,

ˆ ˆ' ' ' ' ' ' so

so r s r s

r s

d S M H d S M d S M E d S M h   
 

   (134) 

(see equations (19) and (31)).  Let us define 
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   2 3

1

2
i

i

Z
q i L

c r




 

    (135) 

(where i  is the coordinate of the thi  electron), so that  

      so

ih i q i    (136) 

(where i  is the spin coordinate of the thi electron), even though in the actual 

implementation the matrix elements are replaced by spin-orbit potential matrix 

elements [45].  Since we know that  q i is a three-component vector, we can also cast it 

as a rank-one spherical tensor by defining [11] [46] 

 

      
   

      

1
1 2

0

1
1 2

x y

z

x y

q i q i iq i

q i q i

q i q i iq i

  



 

 (137) 

(we can treat i equivalently), whereby the spin-orbit operator can be recast as  

        1so

ih i q i


 


    (138) 

Thus  

 

         

             

 

| |

| 1 |

1 | | | |

so so

r s i i

i i i

h r i h i s i

r i q i s i

r q s

 



 




 


   

     

  





  

   

    





 (139) 

and equation (134) becomes 
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 

 

   

, , ,

, , ,

, ,

ˆ ˆ' ' ' ' ' ' 1 | | | |

ˆ1 | | ' ' ' | |

ˆ1 | | ' ' ' ,

so r s

r s

r s

r s

r s

d S M H d S M d S M E d S M r q s

r q s d S M E d S M

r q s d S M Z r s d S M



   
  



   
  



 


  

  







    

     

   

 

 



 (140) 

where we have defined 

  
,

ˆ ˆ, | |r sZ r s E   
 

      (141) 

which is itself a rank-one spherical tensor.  By the Wigner-Eckart theorem (see Appendix 

I), the integration of that tensor can be cast as a product of separate geometric and 

dynamic pieces [46]: 

      
' ' ' 1

ˆ' ' ' , 1 ' ' || , ||
'

S M S S
d S M Z r s d S M d S Z i j d S

M M




  
   

 
 (142) 

where 

 
' 1

'

S S

M M

 
 
 

 (143) 

is the Wigner 3-J symbol [46], another incarnation of the Clebsch-Gordan coefficients 

discussed in Appendix I, and  ' ' || , ||d S Z i j d S  is known as the reduced matrix 

element [46].  The spin-orbit Hamiltonian can be expressed as 

   
' '

, ,

' 1
ˆ' ' ' 1 | | ' ' || , ||

'

S M

so

r s

S S
d S M H d S M r q s d S Z i j d S

M M




 

 



 
     

 


 
(144) 

For this element to be non-zero, 'd must be obtained from d by substituting orbital r

for orbital s in d ; further, 'M M   must be satisfied [11]; thus the summation is 

dropped: 
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   
'

'

' 1
ˆ' ' ' 1 | | ' ' || , ||

' '

S M

so M M

S S
d S M H d S M r q s d S Z i j d S

M M M M





 
     

  
 (145) 

Drake and Schlesinger [44] show that the reduced matrix element  ' ' || , ||d S Z i j d S  

can be expressed as  

 

  1

1
1

1 12
1 1 1 1, , 1 1 1 121 16

12 2

' ' || , ||

' 1
ˆ ˆ ˆ1 'NS S

N N N n j i n ij N N N

N

d S Z i j d S

S S
d S M E E E d S M

S





 

       





 
  

 

 (146) 

where 1N   is the index of the extra orbital, 1n  is the index of the extra electron, and 

 
1 1

12 2

' 1

N

S S

S 

 
 
 

 (147) 

is the Wigner 6-j symbol [46].  Thus we see that the generators are now spin-free at the 

expense of adding an orbital and an electron to the system.  

Now we proceed to simplify the matrix elements of the spin-orbit Hamiltonian 

(equations (144) and (146)). Since CSFs can couple through the spin-orbit operator only 

if their total spins differ by 0  or 1 , there are only three scenarios for 1NS  : 

1. it is a half integer above the spins of equal-spin CSFs,  

2. it is a half integer below the spins of equal-spin CSFs 

3. it is the average value of the spins of CSFs of different spins. 

For example, when coupling two doublets, 1NS   could be a triplet (scenario 1), or a 

singlet (scenario 2); when coupling a singlet to a triplet, 1NS   must be a doublet 

(scenario 3).  Given these three scenarios, the coefficient and 6-j symbol in equation 

(146) take on only one of three possible values [11]: 
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1. 
  1 2 1S S

S

 
  

2. 
 2 1

1

S S

S




 (148) 

3. 1S   

(where S is the total spin of the ket) respectively pertaining to the above scenarios.  (In 

scenario 3 it is assumed that ' 1S S  ).  Yabushita et al. [11] define  

 
  1

1 1 1 1, , 1 1 1 121

1
1 1 1 , 1, 1, 1 1 12

ˆ ˆ ˆ'

ˆˆ'

ij N N N n j i n ij N N NN

N N N i n n j ij N N N

F d S M E E E d S M

d S M e E d S M

       

       

 

 
 (149) 

Just as in the previous subsection, these matrix elements will be the product of segment 

values.  The quantity  
1ij N

F


 can then be expressed as the product 

      1 11
,ij ij N NN N

F F W T b 
  (150) 

The segment 1k N   can take on only three symbols, pertaining to the above three 

scenarios: 

1. 
  

 1 ;1,1;0NT W   

2.  1 ;2,2;0NT W   (151) 

3.  1 ;1,2;0NT RL   

which have corresponding segment values [11] 
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1. 

 
 

1 1,
2 1

N N

S
W T b

S
   


 

2.  1 1

1
,

2
N N

S
W T b

S
 




 
(152) 

3.  1 1, 1N NW T b    

Thus the reduced matrix element  ' ' || , ||d S Z i j d S
 
can be simplified in each 

scenario by considering the product of  ij N
F  with the appropriate quantity from 

equations (148) and from equations (152).  Considering that for scenarios 1 and 2 

'S S and for scenario 3 1 'S S  , all three scenarios result in the same product: 

    
' 1

' ' || , ||
2

ij N

S S
d S Z i j d S F

 
  (153) 

In turn, the elements of the spin-orbit Hamiltonian are 

   
'

'

' 1 ' 1ˆ' ' ' 1 | |
' ' 2

S M

so M M ij N

S S S S
d S M H d S M r q s F

M M M M





   
     

    
(154) 

Note that all references to the additional orbital and electron have been removed from 

this form of the spin-orbit Hamiltonian matrix.  This method of  calculating spin-orbit 

generators will be crucial in calculating the spin-orbit DCTs. 

The real spin-orbit Hamiltonian 

Molecular systems with even numbers of electrons can always be crafted to 

result in a real Hamiltonian [11].  Systems of odd numbers of electrons with point 

symmetry greater than 2D or 2vC will also have a real Hamiltonian [47]; however, odd-

electron systems with less than this level of symmetry will have a necessarily complex 
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Hamiltonian.  Yabushita has implemented a technique which adds a non-interacting 

electron to such systems so the Hamiltonian will be real, albeit twice the dimension 

[11].  The advantage of such a system is that the arithmetic involved in diagonalizing a 

real Hamiltonian is less computationally costly than the arithmetic for a complex 

Hamiltonian, despite its larger size.  This technique also fits well into the already-

established real arithmetic of the COLUMBUS MRCI programs [7] [8] [9] [10].  The 

disadvantage of the extra-electron technique is that there are now twice as many states 

as expected, and half of them must be eliminated as they do not represent true states.  

Kedziora has proposed that in a future iteration of COLUMBUS, the extra-electron 

technique be abandoned in favor of a smaller, complex Hamiltonian with the correct 

number of eigenvalues and eigenvectors [48].  
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III. Formalism 
 

Normally, energy eigenvalues and wavefunctions are calculated point-wise in the 

nuclear manifold, which would lend calculation of gradients and DCTs to a finite 

difference method; however, finite difference methods are less accurate than analytic 

methods, especially when automated [49].  Shepard has introduced a method to 

evaluate energy gradients of CI wavefunctions analytically [3].  These energy gradients 

can be expressed in terms of atom-centered basis functions and geometry-dependent 

coefficients; however, due to Shepard’s method, derivatives need only be calculated 

explicitly for the original atom-centered basis functions, which are known analytically.  

Lischka et al. have adapted this method to calculate DCTs analytically [5], which is the 

method used in COLUMBUS.  We shall outline these methods here, including the 

modifications necessary to accommodate the spin-orbit Hamiltonian. 

 

Analytic Spin-Orbit Gradients  

Constructing the Solution Wavefunctions 

Constructing the orthogonal, geometry-dependent basis 

Under the Born-Oppenheimer approximation, one normally chooses a point 0R

in the nuclear manifold and constructs an orthonormal electronic basis suited to it.  At 

another point on the manifold, 0R R   , the basis at 0R is scrapped and a new basis 

is created.  There is no explicit analytic connection between these two bases.  Evaluation 

of the nuclear gradient on electronic functions requires knowledge of the bases at 0R
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and R in the limit that 0  .  To this end, it behooves us to construct a single 

geometry-dependent basis, rather than a distinct basis for every point.  It is important 

to keep in mind that, although this basis will be constructed to apply to points on the 

manifold within a   neighborhood of 0R , because of the limiting process, it will never 

actually be evaluated at any point except 0R .  This fact will aid us in the construction 

and use of the basis. 

In the following derivation by Shepard [3], we will pass through many bases.  We 

will use bracketed superscripts to keep track.     will indicate the atomic, non-

orthogonal basis;  C  will indicate the basis that is geometry-dependent and 

orthonormal at the reference geometry, but non-orthogonal elsewhere; and  S will 

indicate a basis which is geometry-dependent and everywhere orthonormal.  Other 

bases will be notated as they are introduced. 

For a given geometry 0R , we have a set of normal but non-orthogonal atom-

centered one-electron functions  0R .  Through an MCSCF step [35], an 

orthonormal set of molecular orbitals  0i R  is constructed, with the relationship 

      0 0 0R R R C  (155) 

 where  



76 

 

  

 

 

 

1 0

2 0

0

3 0

R

R
R

R








 
 
 

  
 
 
 

 (156) 

Let us now create a geometry-dependent basis in a similar manner: 

        0

C
R R R C  (157) 

where the atomic orbitals are allowed to vary with geometry, but the coefficient matrix 

is not reevaluated at every point.  Such a basis is, however, only orthogonal at 0.R   To 

remedy this shortcoming, let us define the overlap matrix  
S , such that 

        †R R R


  S  (158) 

In the  C  basis,  

                        †† † †

0 0 0 0

C C C
R R R R R R R R


       S C S C C C  (159) 

Note that at 0R ,    0

C
R S I .  At every other geometry R , there exists a 

transformation 
 

 
1

2
C

R


S  such that  

 
 

     
 

 
1 1

2 2
C CC

R R R
 

S S S I  (160) 

This square root matrix can be defined by the expansion [3] 

 
 

           
21

312
2 8

...
C C C

R R R


     S I S I S I  (161) 

which evaluates to I at 0R .  Also, the derivative of the above expression evaluated at 

the reference geometry (which will soon be needed) evaluates to  
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3
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1
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C C
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C C
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C

d d d d
R R

dR dR dR dR

d d
R S R

dR dR

d
R

dR

  
   

 
 

 
    

 
 

 

S I S I

S I I

S

 (162) 

where the third and higher terms in the expansion evaluate to zero as    0

C
R S I .  

With this transformation matrix, we can now construct the basis 

    
 

     
1

2
CS C

R R R 


 S  (163) 

which is orthonormal at all geometries R . 

Constructing a solution away from the reference geometry 

We have created an orthonormal one-electron basis; however, the actual wave 

functions will be represented in the CSF space spanned by the Gel’fand-Tsetlin basis.  

Consider the following highly contrived yet didactic example.  Suppose we are 

interested in a system of six electrons with four orbitals in a singlet configuration.  Then 

there are 10 CSFs in the full-CI space, represented by the Weyl Tableaux in Figure 21.  

Recall that we construct the Gel’fand-Tsetlin basis with a set of spatial orbitals from a  

 
 

1 1  1 1  1 1  1 2  1 1  1 1  1 2  1 1  1 2  2 2 
2 2  2 2  2 3  2 3  2 2  2 3  2 3  3 3  3 3  3 3 
3 3  3 4  3 4  3 4  4 4  4 4  4 4  4 4  4 4  4 4 
                             
                                                            

 
Figure 21. Gel'fand-Tsetlin basis for N=6, n=4 singlet 
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prior MCSCF step.  Suppose in the MCSCF step, we want to leave the first and second 

orbitals doubly occupied.  Then we are restricted to the MCCSF space of  01 R 

 02 R   05 R , since they are the only CSFs in which this occurs.  Assume that we 

already have the MCSCF solution at 0R .  Let  0mc R  be an eigenfunction of  0RH .  

Figure 22 visualizes this eigenfunction in three-dimensional CSF-space.   

 
 

 

Figure 22. MCSCF solution vector projection in 3D CSF-space 
 
 
 

Now let  R  be an eigenfunction of  RH , which is confined to the space 

     1 2 5R R R  .  Since both of these functions are normal, they can be 

transformed one into the other by a unitary transformation: 

       0
ˆexpR A R mc R   (164) 

where Â  is the antihermitian product of parameters and unitary generators 
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     ˆ ˆ ˆ
rs rs sr

r s

A R a R E E


   (165) 

These two wavefunctions are represented as coefficient vectors in a CSF space.  They 

differ in two important ways: first, their CSF expansion coefficients are different; and 

second, the CSFs themselves differ as each set is composed of MOs that have resulted 

from a geometry-dependent optimization of energy.  The unitary transformation 

  ˆexp A R encompases both of these differences, and so we can split it into two 

separate transformation operators: one that is a rotation of the CSF expansion 

coefficients, and one that is a rotation (and optimization) of the CSFs which make up the 

basis, 

              0
ˆ ˆexp exp

K S
R K R P R mc R   (166) 

where the coefficient rotation   ˆexp P R  acts on the function first, followed by the CSF 

rotation.   Here we introduce the  K  basis, which is geometry-dependent.   Figure 23 

shows an example of these two rotations.  

A short discussion of essential and redundant orbital optimization is now 

relevant.  The MCSCF step rotates the orbitals, which consequently rotate the CSFs.  This 

procedure improves the solution to a subsequent (non-full) CI calculation.  The MCSCF 

rotations can be partitioned into two sets: essential and redundant.  Essential rotations 

are those that result in a lower eigenvalue in the MCSCF step, while redundant rotations 

have no effect on that eigenvalue after a reoptimization of the MCSCF CSF coefficients.   
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Figure 23. (Left) Rotation of a vector via CSF expansion coefficients; (Right) Rotation of 
a vector by rotating the CSFs 

 
 
 
Redundant rotations take place in invariant orbital subspaces.  The subsequent CI step 

will also rotate CSFs, but only via coefficients—not the orbitals.  It too will have a 

partition of essential and redundant rotations.  If the MCSCF invariant space is 

contained in the CI invariant space, any set of MCSCF invariant rotations will have no 

effect upon the CI eigenvalue; however, if some component of the MCSCF invariant 

space lies outside the CI invariant space, seemingly arbitrary rotations in the MCSCF step 

will produce different energies in the CI step.  For this reason, an additional 

transformation,   ˆexp Z R , known as orbital resolution is required to ensure the CI 

energies are well-defined, and thus there is a well-defined limiting process to obtain the 

derivatives.  Let us continue the example to see how this transformation affects the 

solution wavefunction. 

Since we have left orbitals 1 and 2 doubly occupied in this example, the orbital 

subspace spanned by those orbitals is invariant.  (For further discussion of invariant 
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subspaces, see [3].)  We can, therefore, arbitrarily rotate orbitals 1 and 2 by the unitary 

operator   ˆexp Z R  in the invariant subspace and the CSFs will still span the same CSF 

space (see Figure 24).  That is, a solution vector in the basis on the left side of Figure 24 

can be expressed in the basis on the right by a rotation of the CSF expansion 

coefficients,   ˆexp Z R , that exactly offsets the rotation of the CSFs in the invariant 

space (see Figure 25).  Thus we have 

 

             

               

            

0

0

ˆ ˆexp exp

ˆ ˆ ˆ ˆexp exp exp exp

ˆ ˆ ˆexp exp exp

Z K

S

S

R Z R Z R R

K R Z R Z R P R mc R

K R Z R P R mc R

  

  
 



 (167) 

where   ˆexp Z R  as been rolled into   ˆexp P R , as they are both rotations of 

coefficients only.  The two vectors, while physically the same, have distinct  

 
 

 

Figure 24. (Left) the MCSCF optimal CSFs; (Right) An arbitrary rotation in the invariant 
space leads to an equivalent optimal set of CSFs, where the energy is the same as the 

previously optimized energy 
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Figure 25. Different representations of the same vector due to a redundant rotation 
 
 
 

representations.  For this reason, we have introduced the  Z ,
 
or resolved basis, as our 

final one.   

Now suppose that, for our CI step, we relax the double occupancy restriction of 

orbital 2, but we keep orbital 1 doubly occupied and  require at least one electron to be 

in  

orbital 3 at all times.  The CI space is          1' 2' 3' 6' 8'R R R R R    .  

The CI solution will not contain the MCSCF solution at R because  5' R  is absent, but 

it will contain the projection onto the    1' 2'R R space, which we explicitly 

highlight: 

 

             

           

     

ˆ ˆexp 1' 1' exp

ˆ ˆexp 2 ' 2 ' exp

m MCSCF

CI R Z R R R Z R CI R

Z R R R Z R CI R

m R m R CI R


  
 

  
 

 

 (168) 
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Unless       ˆ5' exp 0R Z R CI R  , the eigenvalue will not be minimal, and will 

depend on the operator K̂  chosen.  Thus, while Ẑ  is redundant in the MCSCF step, it 

must be chosen such that       ˆ5' exp 0R Z R CI R 
 
in order to minimize the CI 

energy. 

Given the correct orbital resolution, the CI solution vector at R can be expressed 

not only as a rotation of the MCSCF solution at 0R , but as a rotation of the CI solution 

vector at 0R as well.  Thus the CI solution at R  can be expressed as 

                 0
ˆ ˆ ˆexp exp exp

Z S

CI CIR K R Z R P R R   (169) 

All of the nuclear geometry dependence has now been removed from the wave function 

and resides in the optimization operators. 

The Analytic Gradient 

We can now use the CI solution wavefunctions at an arbitrary nuclear geometry 

to construct the analytic gradient.  The CI solution vectors, which are vectors of CSF 

expansion coefficients, satisfy the (electronic) matrix Schrödinger equation 

        I I IR c R R c RH  (170) 

where I is the eigenvalue of the CI wavefunction I , represented here by a vector of 

coefficients in the CSF space, Ic .  In this case, H  is the electronic Hamiltonian matrix 

which includes both non-relativistic and fine-structure contibutions, including the spin-

orbit Hamiltonian (see equation (12)): 

      0 soR R R H H H  (171) 
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We can take the derivative of the Schrödinger equation and left-multiply it by Jc : 

              
x x

J I J I I

R R
c R R c R c R R c R 

 
H . (172) 

Applying the chain rule to both sides, 

             

            
x x

x x

J I J J I

R R

I J I I J I

R R

c R R c R R c R c R

E c R c R R c R c R





 
 

 
 

 



H
 (173) 

The first term on the right-hand side is the delta function    J I

JIc R c R  , yielding 

             

        
x x

x x

J I J J I

R R

I I J I

JIR R

c R R c R R c R c R

R c R c R



  

 
 

 
 

 



H

 

(174) 

For the gradient, we will assume that I J ; later we will make the alternate 

assumption for the DCTs.  We can now isolate the energy gradient, 

                   

      

x x x x

x

J J J J J J J J J

R R R R

J J

R

R c R R c R c R c R c R c R

c R R c R

     
   




  



H

H
 (175) 

Let us use the following shorthand notation for equation (175): 

        
xx

I IR R R R   H  (176) 

where the superscript x  denotes differentiation with respect to a nuclear coordinate. 

Although this equation appears to be the Helmann-Feynman Theorem, it is not.  

The Helmann-Feynman Theorem applies to exact wavefunctions, whereas this formula 

applies to CI wavefunctions, which are only exact within the space spanned by the basis.   

Following equation (171), let us split equation (176) into two pieces: 

              0

x xx

I I I so IR R R R R R R     H H  (177) 



85 

 

Shepard’s formalism already addresses the first term on the right-hand side of equation 

(177) [3] (also see Appendix G for more detail), and so we will focus on the last term, 

following in a parallel manner. 

Per Shepard’s formalism, the spin-orbit gradient in the resolved  Z  basis can be 

expressed in the orthogonal  S  basis as 

 

                   

           

           

[ ] [ ]

0 0 0 0 0 0

[ ]

0 0 0 0

[ ]

0 0 0 0

,

,

x xZ Z S SZ S

I so I I so I

xS SS mc

I so I

xS SS mc

I so I

R R R R R R

R R R R

R R R R

   

 

 



 
 

 
 

H H

H Z

H K

 (178) 

where higher orders of commutators are considered negligible, and the bra-ket notation 

indicates vector-matrix multiplication (cf. equation (269) in [3]).  This result stems from 

the form of the solution wavefunction at an arbitrary geometry as expressed in equation 

(169).  Let us first address the first term on the right-hand side of equation (178), then 

subsequently we shall address the final two terms, which are treated similarly to one 

another. 

The First Term: The Orthogonal Basis Derivative Term 

Using the methods of second quantization, the first term on the right-hand side 

of equation (178) can be reduced to 

 

                   

          

[ ]

0 0 0 0 0

0 0

xS S so S S SS x

I so I r s I r s I

r s

so S S Sx

I r s I

R R R h R E R

Tr R R

   
 

 

   

 





H

h E

 (179) 
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where 
r sE  

 is a non-spin-averaged unitary group generator, and the matrix soh

represents the operator ˆsoh  defined to be proportional to the spin-orbit operator: 

   
,

ˆ ˆ ˆso

l e

l m

h r l s lm lm   (180) 

(cf. equation (11); see [11]).  The derivative of the spin-orbit integral matrix is not 

calculable by the present form of any integral program in the COLUMBUS suite; 

however, these terms are available in NWCHEM in 1C  symmetry [50].  When this 

operator is integrated over electronic coordinates between spin-orbitals, we see that 

 

            

      

,

,

ˆ

ˆ ˆ

S so S S S Sso

r s l e

l m

S S

l e

l m

h r h s r r l lm lm s s

r r l lm lm s s

 

 


    

  

  





 
 (181) 

Let us define a new non-spin-averaged density matrix: 

                    0 0 0 0 0: :
S so S S S SI I

r s I r s I j i j r s i

ij

D R R E R c c r R E r R          (182) 

(cf. definition (34)) where  S

j  are the CSFs and I

jc are the corresponding wavefunction 

coefficients.  Combining equations (182), (181), and (179), we can rewrite the 

orthogonal basis derivative term: 

         

                  

[ ]

0 0 0

0 0 0 0

,

ˆ ˆ: : : :

xS SS

I so I

x
S S S SI I

e l e e j i j e r s i e

rs l m ij

R R R

r r R r l lm lm s r R s c c r R E r R   

 

 

    



 
    

H

 

  (183) 

which we will separate into a spin-independent integral piece: 
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                0 0 0

,

ˆ: :
xx

S S S

e l e e
rs

l m

q R r r R r l lm lm s r R  
   (184) 

and a spin-dependent density piece: 

             0 0 0
ˆ : :

S S SJ I

j i j r s i
rs

ij

Z R s c c r R E r R   


      (185) 

which we will call the new spin-orbit density matrix.  Thus we see that the first term on 

the right-hand side of equation (178) reduces to the trace of the matrices 

                   [ ]

0 0 0 0 0

x xS S S SS

I so IR R R Tr R R    H q Z  (186) 

As a result of this dissertation, the spin-orbit density matrices are now available in the 

COLUMBUS program CIDEN, and are traced with the derivatives of the one-electron 

integral matrices, q , in our modified version of NWCHEM.  (In NWCHEM, the integral 

matrices and their accompanying analytic gradients are multiplied by i to force them to 

be real.)   

The Second and Third Terms 

The nuclear dependence will now be dropped for brevity.  In the second and 

third terms on the right-hand side of equation (178) , all three matrices have a second-

quantized form: 

 

   

 

 

ˆ

ˆ ˆ

ˆ ˆ

S so S

so r s r s

r s

mc mc

rs rs sr

rs

mc mc

rs rs sr

rs

h E

z E E

k E E

   
 



 

 







H

Z

K

 (187) 

where 
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    so S

r s rs
rs

h q s   


   (188) 

leading to the forms 

            [ ]

' ' ' '

' '

ˆ ˆ ˆ, ,
S S S so S SS mcx mcx

I so I rs I r s r s rs sr I

rs r s

z h E E E   
 

           H Z  (189) 

and  

            [ ]

' ' ' '

' '

ˆ ˆ ˆ, ,
S S S so S SS mcx mcx

I so I rs I r s r s rs sr I

rs r s

k h E E E   
 

           H K  (190) 

We must now determine the meaning of the commutator  ' '
ˆ ˆ ˆ,r s rs srE E E 

 
 

, which 

appears in both terms.  Using the commutation rule for unitary group generators, 

 ˆ ˆ ˆ ˆ,r s t u r u st s t ruE E E E 

           
 

 (191) 

we conclude that  

 
 ' ' ' ' ' ' ' ' ' '

' ' ' ' ' ' ' '

ˆ ˆ ˆ ˆ ˆ ˆ ˆ,

ˆ ˆ ˆ ˆ

r s rs sr r s s r s r r s r s s r s r r s

r r s s s s r r r r s s s s r r

E E E E E E E

E E E E

   

         

   

       

   

   

     
 

   
 (192) 

When the requisite sum over spin-orbitals is applied and the spin-orbit integrals 

included, we find 

 

 ' ' ' ' ' ' ' '

' ' ' '

' ' ' ' ' '

' ' '

' ' ' ' ' '

' ' '

ˆ ˆ ˆ ˆ ˆ,

ˆ ˆ ˆ

ˆ ˆ ˆ

so so so

r s r s rs sr r r r s s s s r

r s r s

so so so

r r r s s s s r r s r r

r s r

so so so

r s s s r s r r r s s s

s r s

h E E E h E h E

h E h E h E

h E h E h E

           
   

           
  

           
  

   
 

  

  

  

  

  

 (193) 

Since soh is symmetric, we take advantage of the fact that  

 so so

r s s rh h     (194) 
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as well as the freedom to choose independent summation indices to rewrite equation 

(193) as  

     

   

' ' ' '

' '

ˆ ˆ ˆ ˆ ˆ ˆ ˆ,

ˆ ˆ ˆ ˆ

so so so so so

r s r s rs sr r t t s r t t s s t t r s t t r

r s t t

so so so so

s t t r s t t r r t t s r t t s

t t

h E E E h E h E h E h E

h E h E h E h E

                   
   

               
 

     
 

   

  

 
 (195) 

which further reduces to  

  ' ' ' '

' '

ˆ ˆ ˆ ˆ ˆ, 2 2so so so

r s r s rs sr r t t s s t t r

r s t t

h E E E h E h E           
   

   
     (196) 

Each of the terms on the right-hand side of this equation is an element of a spin-

contracted Fock matrix for the spin-orbit Hamiltonian.  (See Appendix G for definitions 

of non-relativistic Fock matrices).  Let us define 

 

      

      

     

ˆ

ˆ

S S Sso

so r t I t s I
rs

t

S S S

I t s I
rt

t

S S

rt ts
t

F h E

q s E

q Z

   


   
 

 


 

   









 



 (197) 

and 

         2
S Sso

orb so sors rs sr
f F F   (198) 

so that equations (189) and (190) yield 

 
     [ ],
S SS mcx mcx so mcx so

I so I rs orb orbrs
rs

z f z f       H Z  (199) 

and 

 
     [ ],
S SS mcx mcx so mcx so

I so I rs orb orbrs
rs

k f k f       H K  (200) 
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respectively, yielding 

                   [ ]

0 0 0 0 0

xZ Z S SZ mcx so mcx so

I so I orb orbR R R Tr R R z f k f        H q Z  (201) 

Orbital Resolution Vector 

It has been shown by Shepard that the form of the orbital resolution vector, z , 

depends on the method of resolution [3]; if several methods are used, the contribution 

from each method must be summed.  The three methods available in the MCSCF 

program are natural orbital (NO) resolution, F-Fock matrix resolution, and Q-Fock matrix 

resolution; however, the F-Fock matrix resolution is not available for use in gradients 

and DCTs at this time.  The other two methods result in the following forms of the 

orbital resolution vector: 

1. Natural Orbital 

 
 

   

K x
NOx rs
rs K K

ss rr

D
z

D D



 (202) 

2. Q-Fock Matrix 

 
 

   

K x
Qx rs
rs K K

ss rr

Q
z

Q Q



 (203) 

where the natural orbital resolution uses the one-electron non-relativistic transition 

density matrix defined in equation (35), and the Q-Fock resolution uses the Fock matrix 

 
          

2 2
K K K K K

rs rs rstu rtsu tu

tu

Q h g g D    (204) 
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The Product xz f  

While the product of the orbital resolution vector gradient with the orbital 

gradient vector will remain the same for the non-relativistic term, the spin-orbit term 

will require a few modifications based on the results presented above.  That product can 

be expressed as: 

      
   

   2
so soK KNOx so x x Drs sr

orb rs rs soK K rs
r s rsss rr

F F
z f D D A

D D

 
   
 
 

   (205) 

      
   

   2
so soK KQx so x x Qrs sr

orb rs rs soK K rs
r s rsss rr

F F
z f Q Q A

Q Q

 
   
 
 

   (206) 

(The undefined diagonal elements are resolved by defining A to be zero on the 

diagonal.)  Note that these new X

soA matrices differ from Shepard’s formalism only in 

that they have the spin-orbit Fock matrices in the numerator, while all other matrices 

remain the same.  The result is that these terms are evaluated parallel to Shepard’s 

formalism, with the exception that the X

soA  matrices are substituted for the non-

relativistic variety.   

The derivative of the Q-Fock matrix (definition (204)) is 

 
                 

2 2 2
K K K K x K K K Kx x x x

rs rs rstu rtsu tu rstu rtsu tu

tu tu

Q h g g D g g D       (207) 

When partially transformed into the [S] basis, this derivative is 

 

             

               

2 2 , 2

2 , , 2

K S S S S x Sx x x x

rs rs rstu rtsu tu
rs

tu

S S S K K Kx x x

tu rstu rtsu tu
rstu rtsu

tu tu

Q h h K g g D

g K g K D g g D

   

   



 
 (208) 
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where   †,  A B AB B A .  Three types of terms exist in this gradient: 

1. Terms involving derivatives of integral matrices 

2. Terms involving derivatives of K  

3. Terms involving derivatives of transition density matrices. 

The natural orbital resolution will only involve the third type of term because it has no 

Fock matrices. 

Q-Matrix Terms, Type 1 

These terms have the form 

 
              

     1
2

2 2
I

S S S SQx so x Q x x Q

orb rs so rstu rtsu tu sors rs
rs rstu

S Sx Q x Q

so so

z f h A g g D A

Tr Tr

   

 

 

h D g d

 (209) 

where we have defined 

 

   

             

           

1
2

1 1 1
2 2 2

2

2 2

Q Q

so sors rs

S S SQ Q Q Q

so so tu so rs so usrstu rs tu rt

S S SQ Q Q

so st so rt so ruru su st

D A

d A D A D A D

A D A D A D



  

  

 (210) 

Q-Matrix Terms, Type 2 

These terms have the form 

 

                 

       
         

 

1
2

† 1 1
2 2

2 , 2 , ,

, ,

2

II
S S S SQx so x Q x x Q

orb so tu sors rsrs rstu rtsu
rs rstu

S Sx Q x Q

so so

S S S Sx Q Q Q Q

so so so so

x Q

so

mc x Qso

orb

z f h K A g K g K D A

Tr h Tr g

Tr

Tr

k f

   

 

   

 

 

 

K D K d

K h D D h g d g d

K F

(211) 
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where we have analogously defined 

    1
2

S SQ Q Q

so so so F h D g d  (212) 

Q-Matrix Terms, Type 3 

These terms have the form 

 

          

   

       

   

2

ˆ ˆ

2

III
K K KQ x so x Q

orb rstu rtsu tu so rs
rstu

KA x

so tutu
tu

K Kx A

n so tu uttu
n tu

K Kx A

n so

n

x Q so

csf

z f g g D A

Q D

p n Q E E mc

p n mc

p f





  



 



 







 Q

 (213) 

where  K
n

 is the complement space of the MCSCF solution vector  K
mc , and we 

have defined 

        2
S SA Q

so rstu rtsu sors rs
tu

g g A Q  (214) 

Natural Orbital Terms, Type 3 

These terms have the form 

 

     

       

   

ˆ ˆ

2

III
KNO x so x D

orb rs so rs
rs

K Kx D

n so rs srrs
n rs

K Kx D

n so

n

x Dso

n csf

z f D A

p n A E E mc

p n mc

p f





 

 



 





 A

 (215) 

Combining equations (215), (213), (211), and (209) into equation (201), we have the 

more refined form of the spin-orbit gradient: 
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              

 

[ ] 1
2

† †

Z Z S S S x SZ x x Q x Q

I so I so so

so Qso

orb orbx x

Qso Dso

csf csf

Tr Tr Tr

f f
k p

f f

      

 
 
  

H h D g d q Z

 (216) 

Matrix Turnover 

We can simplify the final term in equation (216) by defining 

 

 † †mc x x x

so Qso

orb orbtotal

so Qso Dso

csf csf

k p

f f
f

f f

 

 
 
  

 (217) 

mc x is known as the first-order response of the MCSCF wave function, and is shown by 

Shepard [3] to be equal to  

  
1

x

mc

orbmc x mc

R mc

csf

f

f






 
  
 
 

G  (218) 

at the reference geometry, where mc
G is the Hessian matrix, 

mc

orbf is the orbital gradient 

vector and mc

csff  is the CSF gradient vector.  Thus we have that the last term in equation 

(216) is equal to  

  † † 1

so Qso

orb orbx x mc x mc total

soQso Dso

csf csf

f f
k p f

f f
 

 
  
  

G  (219) 

To the right-most matrix-vector product we assign the symbol 

 1so mc total

sof  G  (220) 

which we separate into orbital and CSF pieces: 

 1mc x mc total mc x so mc x so

so orb orb csf csff f f      G  (221) 
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Analogously to Shepard’s method, we assert that the orbital piece has the form 

      1
2

S x S xmcx so

orb orb so sof Tr Tr    h D g d  (222) 

where  

 

  
  

,

,

S so

so orb

S so

so orb





 

 

D D Λ

d D Λ
 (223) 

and so

orbΛ is the matrix form of the vector so

orb .  Similarly, we have 

      1
2

S x S xmc x so

csf csf so sof Tr Tr   h D g d  (224) 

where 

 

   

    1
2

ˆ ˆ

ˆ ˆ ˆ ˆ

so

so csf rs srrs n
n

so

so csf rstu srtu rsut srutrstu n
n

D n E E mc

d n e e e e mc













 

   




 (225) 

Substituting equations (224) and (222) into (216), we find that the spin-orbit gradient is 

 
              1

2

S S S x Sx x Q x Q

so so so so so so soTr Tr Tr          h D D D g d d d q Z  (226) 

which we simplify as 

               1
2

S S S x Sx x tot x tot

so so soTr Tr Tr    h D g d q Z  (227) 

This form of the spin-orbit energy gradient must be transformed back to the 

atomic orbital (AO) basis so that it can be traced with the analytic AO basis gradient 

integrals.  Note that the corrections due to orbital resolution result in traces with the 

non-relativistic integral matrices rather than the spin-orbit integral matrices.  This is due 

to the fact that the spin-orbit integral matrices were not involved in the MCSCF step.  
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For this reason, tot

soD and tot

sod can be summed up with the non-relativistic effective 

density matrices and traced accordingly. This fact makes coding the spin-orbit effective 

density matrices in the program CIGRD as simple as adding the spin-orbit Fock matrix to 

the non-relativistic Fock matrix before any further calculations are performed. 

Transformation to the Atomic Basis 

The three traces in equation (227) are in the  S  basis, and must be transformed 

to the atomic basis.  The density matrices do not change; however, the integral matrices 

transform as: 

         1
2

,
S x C x C C x

 h h h S  (228) 

(where the braces indicate the anticommutator) leading to the transformation of 

equation (227): 

 

                
                       

1
2

1 1 1
2 4 2

, , ,

C tot C C tot C C x Cx x x

so so so

C C x tot C C C x tot C C C x C

so so

Tr Tr Tr

Tr Tr Tr

    

   

h D g d q Z

h S D g S d q S Z
 (229) 

Shepard has also shown that the fourth and fifth trace operations in equation (229) are 

equal to 

 

            
            

11
2

21
4

,

,

C C x tot C C x sc C

so so

C C x tot C C x sc C

so so

Tr Tr

Tr Tr





h S D S F

g S d S F

 (230) 

where 
 1sc C

soF and 
 2sc C

soF are effective Fock matrices defined as  
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       
       
        

1

2

1 21
2

sc C C tot C

so rt so
rs ts

t

sc C C tot C

so rtuv so
rs stuv

tuv

sc C sc C sc C

so so so
rs rs rs

F h D

F g d

F F F





 



  (231) 

In a similar fashion, the last trace operation in equation (229) becomes   

             1
2

,
C x C C x C C

soTr Tr q S Z S F  (232) 

This Fock matrix was defined in equation (197).  Substituting equations (232) and (230) 

into (229), the spin-orbit gradient is defined completely in terms of traces of products of 

integral and density matrices in the  C  basis, whose form is equivalent in the atomic 

basis.  After the transformation of the matrices from the MCSCF molecular orbital basis 

to the AO basis, the spin-orbit energy gradient becomes 

                        1
2

x tot x tot x x totx

so so so so soTr Tr Tr Tr
        

      h D g d q Z S F F  (233) 

These terms are added to the non-spin-orbit form of the gradient, 

               1
0 2

x tot x tot xx

totTr Tr Tr
     

   h D g d S F  (234) 

(see Appendix G) to yield 

 

               
              

1
2

x tot tot x tot totx

so so

x x tot

so so tot

Tr Tr

Tr Tr

     

     

    

    

h D D g d d

q Z S F F F

 (235) 

In the actual implementation, the standard Fock matrices F  and soF  are added together 

early in the program CIGRD.  The effect of this combination is to eliminate the 
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distinction between the various spin-orbit Fock and density matrices defined in this 

section and their spin-contracted counterparts; that is, 

 

tot tot tot

so

tot tot tot

so

tot

tot so tot

 

 

 

D D D

d d d

F F F

 (236) 

thus simplifying the definition of the energy gradient: 

 

           
            

1
2

x tot x totx

x x

so tot

Tr Tr

Tr Tr

   

    

  

   

h D g d

q Z S F F

 (237) 

 

Analytic Derivative Coupling Terms 

Elements of the derivative coupling term matrix P have the form 

      
x

x

JI J IR
f R R R 


  (238) 

(where we are using Lischka’s notation for the DCT [5]).  The wavefunctions I  are 

expanded in the CSF space as 

      : :I

I i i

i

r R c R r R   (239) 

Using this form, the elements of the DCT matrix are 

           : :
x

x J I

JI j j i iR

ij

f R c R r R c R r R 


  (240) 

Applying the chain rule,  

 

          

        

: :

: :

x

x

x J I

JI j j i iR

ij

J I

j j i iR

ij

f R c R r R c R r R

c R r R c R r R

 

 














 (241) 
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In the first term, the derivative operation on the CI coefficients does not participate in 

the integration, leaving only the delta function    : :j i ijr R r R   .  In the second 

term, the CI coefficients again exit the integration, but the gradient operation remains.  

This leaves  

               : :
x x

x J I J I

JI i i j i j iR R

i ij

f R c R c R c R c R r R r R  
 

    (242) 

The first term is a vector dot-product, and emphasizes the change in the CI coefficients; 

thus it is called by Lischka et al. the CI DCT 

          
x x

xCI J I J I

JI i iR R

i

f R c R c R c R c R 
 

   (243) 

The second term emphasizes the change in the CSFs, and is called the CSF DCT: 

          :
x

xCSF J I

JI j i j iR

ij

f R c R c R r R R 


  (244) 

The addition of the spin-orbit operator to the Hamiltonian will significantly alter the CI 

DCT, which will be discussed below.  In COLUMBUS, the CSFs are formed from the 

orbitals defined in the MCSCF step which does not account for the spin-orbit operator.  

For this reason, the CSF DCT is unchanged by the addition of the spin-orbit operator at 

the CI step.  Lischka’s formalism for the CSF DCT is reviewed in Appendix H. 

The CI DCT 

 Recall that we found the energy gradient by assuming I J in equation (174).  

To solve for the CI DCTs, we make the alternate assumption, i.e, I J .  Applying this 

assumption to equation (174) yields 
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                 
1

x x

J I I J J I

R R
c R c R R R c R R c R 


 
 

  H  (245) 

As we did with the energy gradient, we can split the Hamiltonian into two pieces, 

 
             

           

1

0

1

x

x

xCI I J J I

JI R

I J J I

soR

f R R R c R R c R

R R c R R c R

 

 









 

 

H

H

 (246) 

and define 

 
          
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



 


 


 

 

H

H
 (247) 

Thus the CI DCT is very similar to the CI energy gradient, with the notable exception that 

it has an energy difference in the denominator, and the coefficient vectors are from 

different (rather than the same) wavefunctions.  For this reason, the formalism for the 

analytic spin-orbit CI DCT exactly mirrors that of the analytic spin-orbit energy gradient, 

with the addition of the energy difference in the denominator and the substitution of 

transition density matrices in place of the standard matrices: 

 

           
            

1
2

x tot JI x tot JIso x

JI so so

x JI x sc JI JI

so so

f Tr Tr

Tr Tr

   

    

  

   

h D g d

q Z S F F
 

(248) 

This quantity is added to the standard CI DCT (see equation (407) in Appendix G) and the 

standard CSF DCT (see equation (432) in Appendix H) to produce the full form of the 

DCT: 
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              
         

                  

1
2

0 0

x JI CSF JI tot JI x JICI CSF so x

JI tot tot so

x JI CSF JI tot JI

tot tot so

xx JI sc JI JI IJ a CSF

tot so so orb

f Tr Tr

Tr

Tr Tr R f R

     

   

     





      

  

    

h D D D q Z

g d d d

S F F F D

 (249) 

In the actual implementation, just as with their standard counterparts in the 

formulation of the energy gradient, the spin-orbit density and Fock matrices are 

combined with their spin-contracted counterparts, 

 

     

     

     

JI tot JI JI

tot so tot

JI tot JI JI

tot so tot

JI sc JI JI

tot so tot

  

  

  

 

 

 

D D D

d d d

F F F

 (250) 

to yield a cleaner formulation of the DCT: 

 

            
               

        

1
2

0 0

x JI CSF JI x JICI CSF so x

JI tot tot

x JI CSF JI x JI JI

tot tot tot so

xIJ a CSF

orb

f Tr Tr

Tr Tr

Tr R f R

    

     

 





     

   

 

h D D q Z

g d d S F F

D

 (251)  
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IV. Results and Discussion 
 

Test Case and Implementation 

In order to validate the formalism presented in Chapter III, we have 

implemented it in a hybrid of NWCHEM and COLUMBUS codes, and have chosen K He 

with a Stuttgart basis [51] [52]as a test case.  K He was chosen was because of its 

relative simplicity for speedy calculations, the availability of a spin-orbit potential, 

evidence of an avoided crossing (where DCTs should be significant), and its possible 

application to a Diode-Pumped Alkali Laser (DPAL).  Energy surfaces for the excited 

states of K He are shown below in Figure 26. 

 
 

 

Figure 26. K He MRCI energy surfaces 
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Calculation of spin-orbit gradients and DCTs requires derivatives of spin-orbit 

integrals and potentials.  COLUMBUS typically uses one of two integral programs:  

ARGOS, which is capable of handling spin-orbit potentials and integrals; or DALTON, 

which can produce gradients of atomic integrals.  Since neither program currenty does 

both, NWCHEM has been leveraged to produce the spin-orbit integrals to be fed into 

COLUMBUS, as well to calculate the spin-orbit integral gradients used in the traces in 

equations (235) and (249).  Kedziora has modified NWCHEM to write the integrals into 

the Standard Integral File System (SIFS) format used by all COLUMBUS programs.  The 

disadvantage of using NWCHEM for integrals is that, unlike DALTON or ARGOS, 

symmetry-adapted integrals are not available.  This shortcoming requires that all 

calculations must be done in the C1 symmetry group, thus increasing calculation time, 

memory, and space required. 

The current COLUMBUS code that produces the MRCI wavefunctions, including 

MCDRT, MCSCF, MCUFT, MOFMT, CIDRT, TRAN, CISRT, and CIUDG, has not been 

modified.  The density program, CIDEN, has been modified to correctly interpret the 

multi-headed spin-orbit DRT or Shavitt graph (see Figure 20) and to produce the anti-

symmetric spin-orbit density matrices Z  in equation (185).  CIGRD, which produces the 

effective density matrices and the Fock matrix, has been modified to create the spin-

orbit Fock matrix soF  defined in equation (197).  This matrix is then added to the 

standard Fock matrix defined in equation (365) of Appendix G.  This sum effectively 

combines the matrices defined in equations (205) and (206) into those defined in 
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equation (380), as well as combining sc

soF  with totF  in equation (235).  A separate 

symmetric version of soF  is also supplied, as required by equation (235).The spin-orbit 

density matrices, which do not require an effective counterpart, are passed through to 

the CIGRD output files.  After transformation to the atomic basis, the symmetric density 

and Fock matrices are passed back into NWCHEM, rather than DALTON, to evaluate the 

atomic integral gradients and perform the final traces.  For DCTs, the antisymmetric 

(non-spin-orbit) density matrix is still passed to DALTON to evaluate the final trace 

operation in equation (249). 

 

The Density Matrices 

Modification of the density matrices for use with spin-orbit DRTs, as well as the 

creation of the spin-orbit density matrices, is the cornerstone of the implementation.  

We can validate these matrices by using them to calculate the energy expectation value 

of the wavefunctions: 

      1
2

ˆ
I IH Tr Tr Tr  



    h D gd q Z  (252)  

(see equations (32), (184), and (185)).  Note that this is also the trace of the total Fock 

matrix: 
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 
   

 

  

  



   

  



F

q Z

q Z

h D gd q Z

 (253) 

This value should be nearly equal to the energy eigenvalues calculated by CIUDG, which 

approximately solve the Schrödinger equation: 

 ˆ ˆI I

I I I IH H         (254) 

where 
I  is the approximate eigenvector.  The difference between these values is 

dependent upon the convergence tolerance of the MRCI eigenvalues.   

Figure 27 compares the MRCI eigenvalue surfaces with the Fock energy surfaces 

for the test case for the p-manifold excited states.  Point-wise differences are on the 

order of 1010  hartree or smaller.  Each of these states is normally doubly degenerate, 

but due to the addition of the ghost electron [11], each state is quadruply degenerate.  

It is sufficient to specify the energy or gradient of only the lowest of each quadruplet .  

Since the effective density matrices differ from the standard density matrices in 

that they account for rotations in the MCSCF invariant space, the energy expectation 

value they construct should also be approximately equal to the MRCI eigenvalues.  

Figure 28 compares these values with the MRCI eigenvalues.  Their difference should 

now depend not only on the convergence of the MRCI wavefunctions, but also upon the 
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Figure 27. K He Fock - MRCI energy difference 
 
 
 

 

Figure 28. K He Effective Fock – MRCI energy difference 
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convergence tolerance of the MCSCF Hessian inverse.  Point-wise differences are in 

general on the order of 10-10, but grow an order of magnitude when approaching the 

repulsion wall.  Since energies themselves are only converged to 10 -6 hartree in this 

calculation, these small energy differences are most likely numerical artifacts due to the 

different methods used to calculate either energy. 

 

Analytic Gradients 

Analytic gradients have merit on their own, in that they can be used for 

geometry optimization algorithms [53].  Adding this open-shell spin-orbit capability to 

analytic gradients has the potential to improve such optimizations.  While this is a 

contribution in its own right, our interest in them is that the code required to produce 

the gradients is a very large part of the code that produces the DCTs.  The successful 

calculation of these gradients partially validates the calculation of the DCTs. 

The linear geometry of K He allows for easy calculation of a finite-difference 

gradient to which the analytic gradient can be compared. Figure 29 through Figure 31 

compare finite-central-difference gradients using a 0.2 Å split to analytic gradients.  

Differences, for the most part, are less than 1%.   

 

Derivative Coupling Terms and the Adiabatic Mixing Angle 

Effects of the Arbitrary Rotation of Wavefunctions 

DCTs suffer an additional complexity that the gradients do not.  Each MRCI 

wavefunction may have an arbitrary phase factor, which does not affect the energy 
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Figure 29. Finite vs. analytic gradient of K He 1
2

  state 

 
 
 

 

Figure 30. Finite vs. analytic gradient of K He 3
2

  state 
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Figure 31. Finite vs. analytic gradient of K He 1
2

  state 

 
 
 
expectation value or its gradient.  Let 
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and so the phase factor is superfluous.  If we instead consider a transition property 

between different wavefunctions, we find that the phase does indeed matter: 
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Since COLUMBUS only uses real wavefunctions, the arbitrary phase is limited to 1 , but 

it will still require careful deliberation, especially as the DCT crosses the axis.   

In addition to the arbitrary phase angle, there will also be an arbitrary mixing 

angle between degenerate wavefunctions; the doubling of degeneracy due to the ghost 

electron only compounds this issue, creating a quadruple-degeneracy.  To understand 

how this mixing angle affects the DCTs, consider an arbitrary vector in the space 

spanned by the 1
2

 states: 

 1 1
2 2

4

1

i i

i

 


    (258) 

We can project this vector into the space of gradients of the 1
2

  states: 

 1 1 1 1 1 1
2 2 2 2 2 2

4 4 4

1 1 1

j j j j i i

R R R R

j j i

    
   

  

          (259) 

From this equation we conclude that  

 1 1 1 1
2 2 2 2

4

1

j j i i

R R

i

 
 



      (260) 

that is, the DCTs are simply the projections of the gradients of the 1
2

  states onto the 

1
2

  space.  Let us apply an arbitrary unitary transformation to the basis of the 1
2

 space 

(for all practical purposes, we treat the space and its dual equivalently): 
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 1 1 1 1
2 2 2 2

4
†

1

ˆ ˆj i i j

R R

i

U U 
 



      (261) 

While the gradient wavefunction itself has not changed, the DCTs have been changed by 

the transformation.  This means that, unfortunately, a DCT such as 
1 1

2 2

j k

R



  , being a 

projection onto a single arbitrary basis function, is not well-defined.  The Euclidean 

norm of the gradient wavefunction, however, is well defined.  That is, 

 

1 1 1 1 1 1
2 2 2 2 2 2

1 1 1 1
2 2 2 2

1 1
2 2

1
2

4 42
† †

1 1

4

1

ˆ ˆ ˆj i j i i j

R R R

i i

j i i j

R R

i

j j

R R

j

R

U U U  
  

 

 
 



 
 




      

    

  

 

 

  (262) 

Thus we see that the physically meaningful quantity is the norm of the DCTs.  This norm, 

as we shall presently show, is the true DCT for a rotated basis.   

From the four 1
2

  wavefunctions to the four 1
2

  wavefunctions there are a 

total of 16 different DCTs, represented within the matrix  

 

1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2

1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2

1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2

1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2

1 1 1 2 1 3 1 4

2 1 2 2 2 3 2 4

3 1 3 2 3 3 3 4

4 1 4 2 4 3 4 4

R R R R

R R R R

R R R R

R R R R

   
   

   
   

   
   

   
   

        
 
        
 


 
        

 
        
 

p  (263) 

In reality, p is an off-diagonal submatrix of the entire DCT matrix for all wavefunctions; 

however, if we are only interested in the coupling between the  1
2

j space and the 
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 1
2

i space, we need only consider the matrix formed between these eight 

wavefunctions and their duals, for which the diagonal blocks are zero: 

 
†

0

0

 
  

 

p
P

p
 (264) 

If we assume that p is not singular, then there exists a similarity transformation by 

which it may be diagonalized: 

 1d p v p v  (265) 

It follows that the off-diagonal blocks of the matrix P  can be diagonalized by the 

transformation 

 

†
† 1 † 1

††

00 0 0

00 0 0

d

d

       
        

       

pp v v
P

pp v v
 (266) 

We now find P  in a new basis in which the original, arbitrarily rotated and phased 

wavefunctions have been re-rotated to yield a canonical set of wavefunctions  1
2

  

and  1
2

.   This transformation has reduced the number of DCTs from sixteen to four 

(the four eigenvalues of the off-diagonal block), each of which couples only one 1
2



wavefunction to only one 1
2

 wavefunction.  Considering that now each row and 

column of P  contains only one non-zero element, equation (260) tells us that each 

1
2

j

R



  is collinear with a distinct 1
2

i , and that the length of the derivative 

wavefunction is the DCT.  Since the wavefunctions in each respective space are, for our 
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purposes, indistinguishable, there should be no distinction of the coupling between any 

two pairs, and we should expect all four new DCTs to have the same magnitude.   

As an example of the preceeding discussion, consider the DCTs of the K He 

system at 5.0 Å (9.4 bohr).  The calculated DCTs are found in the matrix  

 

6 6 4 2

2 5 6 6

6 3 2 4

5 2 3 6

6.68 10 2.42 10 1.72 10 5.11 10

5.10 10 1.63 10 6.51 10 5.33 10

5.54 10 1.04 10 5.11 10 1.75 10
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   

   

   

   

     

     

    

     

 
 
 
 
  
 

p  (267) 

which is diagonalized by the matrix 

 

3 1 4 1 1 3 1

3 1 1 1 1 3 1

1 1 1 3 3 1
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When the matrix P  built from the matrix in equiation (267) is subjected to the 

transformation in equation (266), the resultant DCT matrix is  
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  (269) 

While each of the DCTs in P  is complex, we have the option of effecting an arbitrary 

phase rotation between each pair of wavefunctions, allowing us to remove the 

imaginary portion of each DCT: 
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 
 

P
 (270) 

As hypothesized, we see that, in the canonical basis, the DCTs between each distinct 

pair of wavefunctions are indeed of the same magnitude.  From this exercise we also 

conclude that we need only calculate four DCTs, not sixteen.  From the four distinct 

elements of any given row or column of the DCT matrix, we can calculate a Euclidean 

norm, which is the DCT in the canonical basis.The radial DCT in the canonical basis, 

calculated as the norm of the DCTs in the first row of P , is shown in Figure 32. 

Adiabatic Mixing Angle 

This exercise has shown that, despite the eight wavefunctions involved, we are 

effectively seeking the adiabatic mixing angle for only two wavefunctions and so we can 

calculate the adiabatic mixing angle according to equation (103).  Figure 33 shows the 

result of that integration (as integrated from R  ). Figure 34 shows the non-adiabatic 

surfaces and the resultant mixed diabatic surfaces.  Figure 35 shows the off-diagonal 

diabatic coupling surface. The strength of the coupling surface depends upon both the 

size of the coupling angle and the energy difference between the two adiabatic surfaces; 

thus the coupling surface continues to grow well past the area where DCTs are strong, 

into a region which, for most interactions, would be energetically disallowed.  These are 

the surfaces that may be used in nuclear dynamics calculations. 
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Figure 32. Radial DCT between 1
2

  and 1
2

  states 

 
 
 

 

Figure 33. Radial coupling angle between 1
2

  and 1
2

  states 
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Figure 34. Diabatic vs adiabatic K He surfaces 
 
 
 

 

Figure 35. Diabatic K He coupling surface 
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Validation 

We have two sources of validation of our DCT calculations.  First, since the 

analytic gradient algorithm is such a large part of the DCT algorithm, the correct  

gradients in the previous section speak to the fidelity of the DCTs calculated with the 

same code.  Second, Werner established a method to estimate the coupling angle using 

the MRCI wavefunction coefficients [12]: 
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 

1
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1
2

1 1
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2
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2
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i

i

i
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 
 
 

  
 
  
 




 (271) 

where the Euclidean norm is taken of the coefficients of the 1
2

  eigenvector, 
1

2

ic


, 

which coincide with CSFs that have 1
2

  symmetry (for simplicity, only the reference 

CSFs are considered in an MRCI calculation).  We can generalize this method to spin-

orbit wavefunctions by using the Euclidean norm of all coefficients pertaining to CSFs 

whose physical occupation is appropriate. Figure 36 shows our calculated mixing angle 

compared to the angle estimated via the Werner method.  Similarly, Figure 37 compares 

our DCT calculation with the derivative of Werner’s angle.  The Werner angle matches 

the angle calculated with the DCTs by less than 0.02 radians, an acceptable error given 

the rudimentary nature of the approximation. 
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Figure 36. Coupling angle as calculated via DCTs vs. calculated via CI coefficients 
 
 
 

 

Figure 37. DCT as calculated vs. derivative of Werner’s angle  
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V. Conclusion 
 

A tool has been developed to calculate energy gradients and DCTs of spin-orbit 

wavefunctions at the MRCI level.  While several approximation methods have been in 

place, no method has been available that actually calculates these quantities for spin-

orbit CI wavefunctions until now.  This work makes such a method available, having 

been aggregated to the MRCI, DCT, and spin-orbit methods already in place in 

COLUMBUS.  

With this formalism in place, spin-orbit energy gradients and DCTs can now be 

analytically calculated for large-atom systems where spin-orbit contributions to the 

Hamiltonian are non-negligible, such as open-shell systems like the Alkali-noble-gas 

mixtures that may be used in a DPAL.  While the energy gradients will be useful in 

geometry optimization problems, the DCTs will provide diabatic potential energy 

surfaces for nuclear dynamics calculations.   

 

K He 

We have calculated such surfaces specifically for the K He system.  The maximum 

derivative coupling for K He appears to occur well outside the energy well of the 1
2

  

manifold (13.2 bohr separation), indicating that, despite its small magnitude (0.117 

radian/bohr), the derivative coupling may play a non-negligible role in the dynamics, 

and should be taken into account for a relevant DPAL-related analysis.  Additionally, the 

coupling surface (Figure 35) becomes non-negligible at about the same geometry and 
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continues to grow well into the repulsion wall, indicating that coupling may continue to 

manifest itself throughout the potential well.  While the DCT and coupling surface 

provide some insight, the true value of this sample calculation won’t be known until 

these surfaces are used for wave packet propagation. 

 

Werner’s Coupling Angle 

While we have used Werner’s method of approximating the coupling angle [12] 

to validate our COLUMBUS calculations, our conclusions also speak strongly to the utility 

of the Werner angle.  From our results, we may conclude that the Werner method has 

been successfully extended to apply to spin-orbit MRCI wavefunctions.  While a single 

point calculation of K He required on the order of 24 CPU-hours to compute the DCT-

derived coupling angle, calculation of the Werner angle required approximately half of 

that time.  This work has shown that, depending on the fidelity one requires, it may be 

preferable in future calculations to simply compute the Werner angle rather than the 

DCTs in the interest of resource management.  This recommendation comes with the 

caveat that the ease of calculation of the Werner angle depends on the complexity of 

the DRT and of the molecular geometry.  For sufficiently complex molecules, this may 

not be a feasible calculation, and the interested party may need to return to the DCT-

based calculation. 
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Recommendations for Further Work 

This dissertation is not an end in and of itself, but has provided a tool for many 

future works.   

Spin-Orbit Density Matrix 

In the formalism presented here, we have introduced a new mathematical tool, 

the spin-orbit density matrix (see, e.g., equation (185)).  While the standard one-

electron density matrix exhibits a number of interesting properties (e.g., the trace is 

equal to the total number of electrons, and each diagonal element gives the 

approximate electron occupation of a given orbital), we have not, in this work, explored 

the full meaning and properties of the spin-orbit density matrix.  Such an exploration 

could bring new understanding and utility to the spin-orbit density matrix. 

Relativistic Geometry Optimization 

With the energy gradient method in place, it will certainly prove enlightening to 

compare current non-relativistic optimized geometries to those calculated with the 

spin-orbit Hamiltonian.  This analysis could reveal how important the spin-orbit effects 

are to the geometries of simple diatoms to complex proteins. 

Wave Packet Propagation 

The diabatic surfaces computed herein may now be used in wave packet 

propagation methods to further explore the dynamics of K He.  The diabatic surfaces of 

similar systems, such as Rb He and Cs He can also be calculated with similar resources 

and likewise employed. 
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Analysis of Angular DCTs 

Because of our interest in the radial coupling mechanism, this dissertation has  

primarily focused on the radial DCT, which is calculated as the z-component of the 

position of either the potassium or helium atom changes.  However, the DCT is truly a 

multi-atom gradient with a different component for each of the six coordinates (in the 

case of K He).  Figure 38 shows the remaining off-axis DCTs of K He. The first property to  

 
 
 

 

Figure 38. X- and Y-DCTs of K He 
 
 
 
note is that movement of the helium or potassium produces different couplings, which 
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the geometry approaches the repulsion wall.  This unexpected phenomenon may be an 

artifact of forcing the use of 1C  symmetry.  When using this symmetry, all states in the 

SA-MCSCF step are in the same irrep, and must be unequally weighted in order to 

account for the effects of orbital resolution on the density matrices (consider equations 

(202) and (203)).  Whether this compromise, or one like it, is the cause for the 

difference in the X- and Y-DCTs, cannot be known without further exploration; however, 

given the agreement with the Werner coupling angle, the answer seems to have no 

impact on the fidelity of the radial DCT. 

The Cartesian DCTs can be transformed to three internal DCTs (radial and two 

angular) and three center-of-mass DCTs by means of a Jacobi transformation [54].  The 

angular DCTs, shown in Figure 39, are of the form 1 1
2 2

i j





  , and are in fact an off- 

diagonal element of the nuclear angular momentum operator, ˆ nJ .  This equivalence can 

provide another source of validation of the DCTs, if ˆ nJ  can be calculated in an 

alternative manner.  Yarkony [55] contends that if an operator, such as total angular 

momentum, commutes with the Hamiltonian, 

 ˆ ˆ, 0H J  
 

 (272) 

then it is true that  

 

 

ˆ ˆ0 ,

ˆ ˆ

ˆ

I J

I I J I J J

I J I J

H J

E J J E

E E J
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 

     

   

 (273) 
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Figure 39. Angular DCTs of K He 
 
 
 
If we consider that this total operator consists of both nuclear and electronic 

components, 
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from the available orbital angular momentum integrals.  However, for the spin-orbit 

Hamiltonian, in which orbital angular momentum is not a good quantum number, 

equation (272) does not hold for L̂,  but rather for total angular momentum, ˆL̂ S .  

Spin integrals, unlike orbital angular momentum integrals, are not readily available in 

NWCHEM or COLUMBUS, and so a comparison of the angular DCTs to electronic angular 

momentum is not possible at this time.  If NWCHEM’s integral program can be modified 

to produce the spin integrals, and COLUMBUS to produce the elements of the spin 

operator, then another source of validation of the DCTs would be available. 
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Appendix A. The Hamiltonian 

 

This appendix provides a brief introduction to the energy operator, or 

Hamiltonian.  Energy is important because it drives the dynamics of a system, the 

understanding of which is the ultimate goal of this research.   

The reason for the preeminent position of energy eigenfunctions in the theory is, 
of course, that they form the stationary states of isolated systems in which 
energy must be conserved. . . . Moreover, because of their simple time 
dependence. . .  they can be used to build up a description of the time evolution 
of non-stationary systems as well. [56] 

 
 
 
Origin 

Formally, the Hamiltonian is derived from the Lagrangian via the Legendre 

transformation [25]: 

    , , , ,i i

i

H q p t q p L q q t   (276) 

where , ,q q and p are generalized position, velocity, and momentum, respectively, and 

the Lagrangian is defined as the difference of kinetic and potential energies: 

 L T V   (277) 

However, when the Lagrangian of a system can be expressed as a sum of functions 

which do not mix degrees of generalized velocities, that is, 

 0 1 2( , ) ( , , ) ( , , )L L q t L q q t L q q t    (278) 

 where 1L  is of first degree in q  and 2L is of second degree in q , then the Hamiltonian 

is just the total energy: 
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 H T V   (279) 

In our quantum mechanical treatment of nuclei and electrons, the kinetic energy will 

only depend upon the square of the velocity and the potential energy will have no 

velocity dependence, and so it follows that the Lagrangian does indeed take the form of 

equation (278), and thus the Hamiltonian will take the form of equation (279).  Although 

the above equations are classical in nature, often the procedure for creating quantum 

mechanical formulae is to merely replace the classical functions with operators  [26].  

This will be the case for the Hamiltonian operator, which will take the form 

 ˆ ˆ ˆH T V   (280) 

 

Kinetic and Potential Energy Operators 

From the classical, non-relativistic analog, the kinetic energy operator will take 

on the form 

 
2ˆˆ

2

p
T

m
  (281) 

where p̂ is the (linear) momentum operator.  To extract the form of the momentum 

operator in position-space, first consider that diffraction experiments indicate that a 

free particle with a known momentum has a wavefunction of the form [40] 

    , exp
i

r t p r t 
 

   
 

 (282) 

where r  is the position,   is the energy, and  is the reduced Planck’s constant.  It is a 

postulate of quantum mechanics that the operator of an observable quantity is 
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hermitian, and thus obeys an eigenvalue equation with real eigenvalues [26]; in the case 

of momentum and energy, 

 
ˆ

ˆ

p p

H

 

 




 (283) 

To preserve these relationships, the momentum operator in the position-space 

representation (as opposed to the momentum- or k-space representation) and the 

energy operator take the form 

 

ˆ

ˆ

p i

H i
t

 






 (284) 

and so the non-relativistic Hamiltonian will always contain a second spatial derivative. 

The form of the potential energy operator will depend on the nature of the 

particular system; however, we can say generally that it will be a function of position 

but not of velocity, 

  V̂ V r  (285) 

(in the case of a free particle, this potential is zero).  Thus we can cast the Hamiltonian 

as a solvable differential equation in position space, 

  
2

2

2
H V r

m
     (286) 

 

The Schrödinger Equation 

The Schrödinger wave equation defines the relationship between the time 

derivative of a wavefunction and its spatial derivative.  For a single particle, it is 
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  
2

2
dt

H V r i
m

  
 

    
 

  (287) 

and is one of the postulates of quantum mechanics [26].  In equation (284) we found 

that the energy operator is expressed as 
t

i 


, which also appears on the right-hand side 

of equation (287) with eigenvalues of energy,   (see equation (283)).  Consequently, 

the time-derivative operator can be replaced by its eigenvalues, and the Schrödinger 

equation itself takes the form of an eigenvalue equation,  

  
2

2
H V r

m
  

 
    
 

 (288) 

This is the time-independent Schrödinger equation [26].  The Hamiltonian may change 

from system to system, but the basic eigenvalue relationship with the wavefunctions 

and energy will remain.  It is this eigenvalue relationship that drives the mathematics of 

quantum chemistry. 
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Appendix B. The Breit-Pauli Hamiltonian 

 

The Dirac Equation 

Quantum chemistry relies on approximate solutions of the Schrödinger equation, 

which itself can be considered an approximation.  If wielded carefully, this equation will 

yield most of the information about the energy of a system; however, in some cases it is 

insufficient for the accuracy required.  By assuming the kinetic energy takes the form in 

equation (281), which leads to the Hamiltonian in equation (8), we have neglected some 

of the less significant, relativistic effects one finds when electron speed approaches a 

non-negligible fraction of the speed of light.   

Close scrutiny of the Schrödinger equation ((288)) reveals that it is not Lorentz 

invariant; that is, it does not treat space and time on equal footing.  A more suitable 

equation for exploring relativistic effects is the Dirac equation for a single electron [57] 

 21
ˆ

t
c p A c i

c
    



  
      
  

 (289) 

where A  is the vector potential,  is the scalar electrostatic potential,   is a three-

component vector of 4x4 matrices, and  is a single 4x4 matrix [57].  Although at first 

glance this equation appears to be the Schrödinger equation with a different 

Hamiltonian, the matrix nature of the equation means that the solutions,  ,  are four-

component spinors rather than scalar wavefunctions.  The electrostatic potential may 

include the nuclear potential, and the vector potential has been included in the 

canonical or generalized momentum [58] [59].  Since the momentum only appears once, 
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the Dirac equation has only a first spatial derivative, symmetric to the first time 

derivative.  Solutions to the Dirac equation simultaneously satisfy the simple relativistic 

wave equation, the Klein-Gordon equation, the continuity equation, and the principle of 

linear superposition [57]. 

 

The Breit Equation 

When introducing additional electrons, an electron interaction term must be 

added to equation (289).  The non-relativistic two-electron operator,  

 1
2

,

1

i j ijr
   (290) 

where 
ij i jr r r  , assumes instantaneous Coulombic forces and thus is not Lorentz 

invariant.  A fully covariant description of the electron interaction lies in the complicated 

Bethe-Salpeter equation [60].  A truncation of the expansion of that equation leads to 

the Breit operator 

 
,

i

i i

Z

r



 

 
  

1
2 2

,

1 1

2

i ij j ij

i j

i j ij ij ij

r r

r r r

 
 
  
   
 
 

  (291) 

which, while not completely Lorentz-invariant, is correct to the order of 4 , where  is 

the fine structure constant ( 1c ) [60].  Since this operator involves the direct product 

of the   matrices, it will involve 16x16 matrices.  The resulting electronic Hamiltonian 

(cf. equation (8)) is  
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2 1

2 2
, ,

1 1 1ˆ ˆ
2

i ij j ij

e i i i i i j

i i j iij ij ij i

r r Z
H c p A c

c r r r r



 

 
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                          

    (292) 

The potential term involving the nuclei retains its non-relativistic form and is included in 

the electrostatic potential term in equation (289): 

 
,

i

i i

Z

r



 

   (293) 

By means of a Foldy-Wouthuysen transform, the Hamiltonian is reduced into this final 

form, the Breit-Pauli Hamiltonian [60]: 
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where i  is the gauge-covariant momentum of electron i [32],  i iE B  is the total 

electric(magnetic) field at electron i, and i  is the spin of the thi electron.  Tinkham 

justifies this simplification to the Breit-Pauli Hamiltonian by the relatively low energies 

addressed in quantum chemistry [56].   

This Hamiltonian can be sorted into seven operators: 

1. The non-relativistic Hamiltonian 
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2. The mass-velocity correction term 
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i
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p
H

c
   (296) 

3. The orbit-orbit term 
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4. The spin-orbit term 

  3 2 3
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5. The Darwin term 
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i i

i

i
H p E

c
   (299) 

6. The spin-spin term 
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7. The external magnetic interaction term 

    1 1
6 2 i i i ic

i

H B A p     (301) 

The electron rest-mass energy, 2c , also appears in the Hamiltonian, but will be ignored 

since it serves only as an energy offset.  Although the Dirac equation acts on four-

component spinors, the above seven terms have scalar functions as their eigenvectors.  

“*T+here is really no longer any serious difficulty in principle in writing down a basic 

Hamiltonian which is accurate enough for all practical purposes in extranuclear physics” 
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[56].  Thus, they can be appended to the non-relativistic Hamiltonian in the Schrödinger 

equation, leading to more accurate eigenvectors and eigenvalues. 

Fine Structure and the Spin-Orbit Operator 

The orders of magnitude of the 1H , 3H , and 4H  terms are on the order of 2

times smaller than the non-relativistic Hamiltonian; these are grouped together as the 

fine structure terms [61].   The others are the hyperfine structure terms, and are at least 

an order of magnitude smaller than the fine structure terms [61].  For this reason, one 

can disregard the hyperfine structure terms and still get a much-improved solution 

compared to the non-relativistic Hamiltonian.  

Let us focus on the spin-orbit term, 3H , as the other fine structure terms, 1H  

and 4H , have little effect in the valence region.  By dissecting the electric field term in 

equation (298), we can see the spin-orbit term separates into one- and two- electron 

pieces.  The field is due both from the nuclei and the electrons: 
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(where no external field is assumed) and so the cross product i iE p is 
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Z
E p r p r p
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

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We recognize  i ir p  as the orbital angular momentum of the thi electron with respect 

to the th nucleus, and  ij ir p as the angular momentum of the thi electron with 

respect to the thj electron: 
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Making these substitutions, equation (298) takes the form 
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Equation (305), more so than equation (298), shows the separate one- and two-electron 

spin-orbit terms.  We can notate these as  

 

 

   

2 3

2 3

1

2

1 1
, 2

2

so

i i

i

so

i ij ji

j ij

Z
h i L

c r

g i j L L
c r




 





  

  




 (306) 

The one-electron term grows rapidly with respect to nuclear size as compared to the 

two-electron term, and so the latter is less important for larger elements [62].  In any 

case, the effects of the two-electron term may be effectively included in the AREP.  The 

revised electronic Hamiltonian is 
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(again, cf. equation (8)). 

  



136 

 

Appendix C. Creation and Annihilation Operators 

 

In this appendix, we discuss the creation and annihilation operators, used to 

second-quantize the Hamiltonian, in greater depth.  While not a proof, this section 

employs a simple example involving small Slater determinants that the reader should 

find helpful in demonstrating their properties.  In this section, we will use kets to 

represent both Slater determinants and functions—to differentiate, we leave electron 

dependence off of the determinant notation.   

 

Annihilation 

For a given function, we recognize that 

            | | | ... | ...i j k i j k                (308) 

Consider the action of the operator 
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on an example Slater determinant, 
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 This is equal to 
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(311) 
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A  1 |i bra will only create a non-zero inner product with a ket that includes  1| i  in 

its direct product.  The resultant inner product will integrate out the thi electronic 

variable since, by orthonormality, we assume 

    |i i      (312) 

The resultant sum of functions is 
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While this does not appear to be a Slater determinant at first glance, when each pair of 

electrons is considered alone, we see that there are in fact three determinants: 

 2 3 3 2 2 3| | |         (314) 

Since 2 3 3 2| |       , equation (314) reduces to the determinant 2 3|    .  Thus the 

operator in (309) has annihilated the 1 spin-orbital from the determinant.  For that 

reason, we can equate it to an annihilation operator [40]: 

  1 1̂|
i

i aN    (315) 

with the action 

 1 1 2 3 2 3
ˆ | |a         (316) 

If we were to split up the spin-orbital into its spatial and spin components, we define 
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Creation 

Next consider the action of the operator 

  1

1
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1 i

i
N

 

  (318) 

on the Slater determinant 2 3|    .  The operator, by adding an orbital to the product, 

must effectively also add a third electron.  Thus, in three-electron space, there are three 

forms of the determinant 2 3|     that must be considered in the product: 
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(Note that the second determinant was multiplied by -1.  This is because of the anti-

symmetric nature of electrons, which requires that the wavefunction, upon exchange of 

electrons, must have opposite sign.  The sign change is not present in the third 

determinant because two electrons were exchanged, thus cancelling the sign change 

[26].)  The direct product with the operator is then 
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A  1| i  ket will only create a non-zero direct product with a ket that does not already 

have a function of the thi electronic variable.  The resultant function is  

 

            

            

            

1
2 3 1 3 2 16

2 1 3 3 1 2

1 2 3 1 3 2

[ | 1 2 3 | 1 2 3

| 1 2 3 | 1 2 3

| 1 2 3 | 1 2 3 ]

     

     

     

 

  

  

 (321) 



139 

 

which is the determinant 
1 2 3|     .  Thus the operator in (318) has created the 

1 spin-

orbital in the determinant. For that reason, we can equate it to a creation operator [40]: 

   †

1 1

1
ˆ|

1 i

i a
N

  

  (322) 

with the action 

 †

1 2 3 1 2 3
ˆ | |a         (323) 

As in the case for the annihilation operator, we can split the spin-orbital into spatial and 

spin components: 

     †1
ˆ|

1
i r

i

r i a
N

   

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The creation and annihilation operators obey the anticommutation relationship [40]: 

  † † † ˆˆ ˆ ˆ ˆ ˆ ˆ, 1r r r r r ra a a a a a        . (325) 

These are the creation and annihilation operators introduced in the main body of the 

text. 
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Appendix D. The Spatial Orbital Basis 

 

In order to represent the Hamiltonian, the first task is to build a suitable basis for 

a single electron; from that set, a basis for the multi-electron wavefunctions can be built 

as a direct product space.  This one-electron basis must meet three criteria: 

1. It must be orthonormal 

2. It must be easy to integrate (for computational savings) 

3. It must predict the lowest possible energy (as a consequence of the variation 
principle) 

 
 

Orthonormality 

For a single atom, the direct product of spherical harmonics in  and  , with 

associated Laguerre polynomials in r provides a set of orthonormal orbitals with which 

to construct wave functions [28].  These orbitals are, in fact, the eigenfunctions of the 

hydrogen atom Hamiltonian [26] and are known as Slater Orbitals [20]; however, for 

polyatomic molecules, hydrogenic basis functions located at different atomic centers 

are not orthogonal, having an overlap matrix defined by 

    S  (326) 

where the k are the orbitals.  Such a basis, which we will refer to as an atom-centered 

basis or atomic orbitals, must be transformed non-unitarily into a non-localized set of 

orthonormal Molecular Orbitals (MO), often referred to as a Linear Combination of 

Atomic Orbitals (LCAO) [20].  These MOs are defined as 
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i ic 



   (327) 

Since the molecular orbitals are required to be orthonormal, a transformation will 

reduce the overlap matrix to the identity matrix.   

 

Integratability 

Slater orbitals, while more physically accurate, are unwieldy for computation.  

For example, the 1S Slater orbital is 

    
1

3 2

expR R


 


 
  
 

 (328) 

which exhibits cusp behavior at the origin.  Figure 40 shows the square root of the 

probability of finding an electron as a function of R , in atomic units.  Integration against 

other Slater orbitals at other origins proves to be computationally intensive.  For this 

reason, an alternative set of Gaussian orbitals is often chosen instead.  The pivotal 

 
 

 

Figure 40. 1S Slater Orbital, =1.0 
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difference between the Slater orbital and the Gaussian orbital, which has the form 

    
3

4
22

expR R


 


 
  
 

 (329) 

is that in the latter the argument is squared in the exponent.  When two Gaussian 

functions are integrated, the result is a Gaussian, regardless of their origins, making the 

task of integration much easier.  Figure 41 compares a Gaussian orbital to the previous 

Slater orbital.  The Gaussian is thicker towards the origin and falls off faster, while it 

exhibits no cusp.  Although it is not a very accurate representation of the Slater orbital, 

the ability to develop efficient integration algorithms with Gaussian orbitals means that 

more of these can be used.  Figure 42 shows a linear combination of three Gaussian 

orbitals against the original Slater orbital. The figure shows that, although not quite a 

match at the cusp, this orbital is much closer to the Slater orbital, and is still more easily 

integrated.  A basis created from such functions is labeled a STO-3G basis.  STO indicates  

 
 

 

Figure 41. Gaussian orbital,  =0.6 
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that it is a Slater-Type Orbital (as opposed to a Slater orbital) and 3G indicates the 

orbitals are each made from three Gaussians [20].  Although the HF method itself can be 

applied to either Slater orbitals or STOs, the integration advantage of the STOs makes 

them a staple in computational chemistry packages. 

 

Lowest Possible Energy 

The variation principle [20] states that, for an approximate eigenvector  , the 

eigenvalue will be related to the true energy by 

 
0Ĥ    (330) 

Thus, given several different bases, the one that produces the lowest eigenvalue is the 

best choice. 

 
 

 

Figure 42. Linear combination of three Gaussian orbitals [20]  
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Appendix E. Self Consistent Field Method 

 

The Fock Operator 

For our purposes, the Hartree-Fock method results in the best possible ground 

state of a molecule given a molecular orbital basis derived from a single Slater 

determinant.  While we will ultimately be interested in optimizing the basis for excited 

states, this method nevertheless provides a first guess from which a more suitable basis 

may be formed.  From the preceding section, we have found that the orbitals must 

satisfy orthonormality, 

 
i j ij    (331) 

and are defined by the variation principle.  Using a single Slater determinant for the 

ansatz   leads to the constraint equation [20] 

                * *1 1ˆ
a b a b a b i a

j i j iij ij

h i i dj j i dj j j i i
r r

       
 

   
     

      
    (332) 

where ĥ  is the single-electron operator from equation (13).  The integral in the second 

term in equation (332)  is called the Coulomb operator,  ˆ
bJ j  and represents the 

average instantaneous coulomb potential between electron i  and electron j .  The third 

term in equation (332) looks almost exactly the same, except that the electrons have 

been exchanged between the two orbitals.  For this reason, this integral is known as the 

exchange operator, and has the following property: 

          * 1
b a b a b

ij

K i i dj j j i
r
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The exchange operator is a result of the antisymmetric nature of electrons (due to the 

Pauli exclusion principle), and doesn’t have a simple classical analog.  The form of the 

operator in equation (333) allows us to rewrite equation (332) as  

          ˆ
b b a i a

j i j i

h i J i K i i i  
 

 
   

 
   (334) 

The operator on the left is called the Fock operator,  f̂ i  [20].  The orbitals must obey 

the pseudo-eigenvalue equation 

 ˆ
i i if     (335) 

which are the Hartree-Fock equations. This is not a true eigenvalue equation because 

the operator f̂  depends upon the eigenvectors i ,and it must be solved iteratively.  

That is, a guess for the eigenvectors is proffered, from which the Fock operator may be 

calculated, from which new eigenvectors can be calculated, and so on until the 

eigenvectors reach self-consistency.   

 

Pople-Nebset  Equations 

The HF method is further subdivided into a number of different cases.  We will 

not review them all, but instead will present one of the more general of these,the 

unrestricted open-shell Hartree-Fock method (UHF), as an example. 

Unrestricted refers to the fact that spin-up electrons will be allowed a different 

set of spatial orbitals than the spin-down electrons.  Thus equation (327) is split into two 

separate equations for spin-up and spin-down: 
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There are also two Fock operators, 
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 (337) 

Plugging these definitions into the HF equations leads to, for example,  

 ˆ
i i ic f c 

   
 

     (338) 

which, when integrated against  , yields 

 i i ic c 

   
 

 F S  (339) 

where S  is the overlap matrix (see equation (326)) and F  is the Fock matrix whose 

elements are defined as  

 f̂ 

   F  (340) 

with symmetric equations for spin-down (note this is not the same second-quantized 

Fock matrix used in the formalism in the main body of the text).  Equation (339) is 

equivalent to the matrix equation 

     F C S C  (341) 

which are known as the Pople-Nebset equations [20].  By transforming this equation into 

a basis in which the overlap matrix becomes the identity matrix, the Pople-Nebset 
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equations become pseudo-eigenvalue equations.  This transformation is effected as 

follows: 

1. Since S  is hermitian, diagonalize it by the transform 

  †s U SU  (342) 

2. Create the matrix 
1

2
s , a diagonal matrix whose entries are the inverse of the 

positive square roots of the eigenvalues of s . 
 
3. Define the transformation 

  
1

2 †
X Us U  (343) 

4. Using this transformation, create the matrices  

   
1

†

'

'

 

 





C X C

F X F X
 (344) 

along with their spin-down counterparts, to create the equations 

  ' ' '   F C C  (345) 

Both F  and F depend on C and C , so the two equations are not independent.   

Thus, in order to solve these equations, one must: 

1. Make an initial guess at F and F  

2. Transform 'F and 'F  

3. Calculate their eigenvectors and eigenvalues; equate these to ',
C  ',

C   and 
  

 

4. Transform these back to C and ,
C  use these to calculate a new F and F

and so forth, until self-consistency is achieved. 
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When the single-electron orbitals have been determined, the final step of the 

SCF method is to create an antisymmetric Slater determinant from the lowest N

orbitals: 

 
0 ...a b N     (346) 

This is the electronic ground state, used to determine the ground-state energy 

 
0 0 0Ĥ    (347) 

As a final note, since C is a square matrix, there will be as many MOs created as 

AOs used, regardless of the number of electrons involved.  Because the MOs not 

occupied by an electron don’t affect the energy, those unoccupied orbitals are 

orthonormalized but not energy-optimized by this process.  If one is interested only in 

the ground state, these extra orbitals are of little value anyway; however, if one is 

interested in excited states, these orbitals are not ideal.  The MCSCF method, to be 

briefly discussed next, addresses this concern by further performing the SCF method to 

higher states.  Although the SCF MOs can be used directly in a subsequent CI calculation, 

an intermediate MCSCF step can reduce the effort of the CI by identifying and 

eliminating those orbitals that will have less impact on the CI result.   

 

Multi-Configuration Self-Consistent Field 

MCSCF is a complicated but useful generalization of the SCF procedure.  While 

the SCF method optimizes the molecular orbitals by adjusting the SCF coefficients (see 

equation (327)), and the CI method optimizes the CI coefficients of the determinants  to 
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create the eigenfunctions of the Hamiltonian (see equation (351)), the MCSCF method 

combines both of these optimizations, but usually on a smaller scale than the CI: 

1. The ground-state orbitals are optimized 

2. Several determinants are constructed (not just the ground state) 

3. A linear combination of determinants is optimized for the ground-state energy 

4. New orbitals are optimized based on the CI coefficients 

The process is continued until self-consistency of the involved orbitals is achieved.  This 

procedure specifically optimizes the orbitals for the ground state; the method can also 

be adapted to optimize the orbitals for some excited state.  For the construction of 

derivative coupling terms, there are several (but commonly two) states of importance.  

Rather than optimizing to any single state, the orbitals are constructed to have the best 

average optimization for all states involved.  This method is called the State-Averaged 

MCSCF (SA-MCSCF) [3]. 

The scope of this project does not involve the modification of the MCSCF 

procedure, and only relies upon it inasmuch as it prepares orbitals for a multi-electron 

basis; hence, we will not give more than this rudimentary explanation here.  

Nevertheless, the interested reader may wish to refer to Shepard’s paper, which 

thoroughly outlines the subject [35]. 
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Appendix F. Configuration Interaction 

 

The method of Configuration Interaction (CI) is an improvement upon the SCF 

method [20].  It is also the principle computational tool with which we calculate 

eigenfunctions for the derivative coupling terms.  The goal of CI is to solve the matrix 

equation 

 I I Ic cH  (348) 

where H is the Hamiltonian matrix, I represents an energy eigenvalue corresponding 

to the eigenvectors  
Ic , which fulfill the relationship 

 I

I i i

i

c   (349) 

While the SCF method used the lowest N orbitals to create a single Slater determinant, 

disregarding higher orbitals, CI uses some or all of the orbitals to create a family of 

Slater determinants in which to represent the Hamiltonian.  The ground state of this 

Hamiltonian will no longer be a single determinant (see equation (346)), but a linear 

combination of determinants.  This Hamiltonian yields two advantages over the SCF 

Hamiltonian: first, the ground state will be at least as good as the SCF ground state, 

leading to an equal or lower (and hence better) ground-state energy; and second, the 

Hamiltonian allows for excited states. 

Given a system of n  spin-orbitals and N electrons, one can make a total of 
n

N

 
 
 

 

Slater determinants.  Each determinant may be constructed by replacing an occupied 



151 

 

ground-state MCSCF orbitals with one of the unoccupied (or virtual) MCSCF orbitals.  For 

instance, if the spin-orbital 
a is included in the ground state, one can construct all the 

determinants that replace 
a with an orbital not included in the ground state, 

r .  

This is a singly-excited determinant, denoted by r

a .  There are  N n N  such singly-

excited determinants [20].  Similarly, we can remove two spin-orbitals at a time and 

replace them, constructing the family of doubly-excited determinants, rs

ab , of which 

there are 
2 2

N n N  
  
  

.  Clearly one can continue constructing determinants in this 

fashion until all combinations are exhausted.  Representing in such an N -electron basis 

gives what is called a full CI Hamiltonian: 

 

0 00 0

0

0

ˆ ˆˆ ...

ˆ ˆ ˆ... ...
ˆ

ˆ ˆ ˆ... ...

r rs

a ab

r r r r rs

a a a a ab

rs rs r rs rs

ab ab a ab ab

H HH

H H H
H

H H H

    

     

     

 
 
 
 
 

  
 
 
 
 
 

 (350) 

(If n N , the CI space reduces to a single determinant.)  Because the Hamiltonian is 

hermitian, only the upper triangle must be calculated.  Furthermore, orthogonality 

restrictions dictate that a number of the elements will be zero [20].  Nevertheless, the 

size of this matrix grows rapidily with the number of basis orbitals and electrons.  For 

this reason, larger molecules almost never receive a full CI treatment.  Commonly, the 

Hamiltonian is restricted to be represented only in the ground state, singly-excited 
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determinants, and doubly-excited determinants; this treatment is aptly named the 

Singles and Doubles CI (SDCI or CISD) [3].  This method calculates even lower energies if 

it is preceded by an MCSCF step.   

It should be noted that, rather than using bare Slater determinants, the CSFs of 

the Gel’fand-Tsetlin basis used in COLUMBUS employ a spin-adapted linear combination 

of Slater determinants; this does not change the general concept discussed here. 

Once the elements of the Hamiltonian are calculated, its eigenvectors are 

constructed from the Slater determinants, 

    0 0

I I
I I r r rs rs

a a ab ab

ar abrs

           (351) 

by a matrix diagonalization or similar procedure.  These are the wavefunctions that will 

be used to calculate derivative coupling terms.   

The interested reader may wish to reference Shavitt’s more complete review of 

the CI method [63]. 

 

Multi-Reference CI 

COLUMBUS uses Multi-Reference Singles and Doubles CI (MRSDCI or MR-CISD).  

This method differs from the standard SDCI in that, rather than taking single- and 

double- excitations only from the ground state CSF, these excitations are taken from a 

set of CSFs, known as the reference CSFs determined from the MCSCF step.  In cases 

where information is needed about excited states, especially nearly-degenerate states, 

MR methods are successful where single-reference methods may fail [9]. 
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Direct CI 

The Hamiltonian matrices calculated in computational chemistry can have 

dimensions on the order of hundreds of millions of elements in practical calculations; 

however, usually it is only the lowest handful of eigenvalues and eigenvectors which are 

needed.  Such a requirement hardly justifies the diagonalization of the entire matrix 

which, for an n n  Hamiltonian can require on the order of 3n operations [64], which is 

too costly when only a few eigenvalues are required.  Furthermore, calculations in 

normal diagonalization routines require the whole Hamiltonian be used, which is a 

fierce burden on computer memory.  Nesbet proposed a method [64] which Shavitt 

modified [65], now known as Direct-CI, which uses only a small portion of the 

Hamiltonian for each calculation, producing one eigenvalue and eigenvector at a time, 

so that the effort required is proportional to the number of eigenvectors sought.  This 

method attempts to solve for the eigenvalues and eigenvectors of equation (348) 

iteratively, without solving all equations at once.  The Davidson method [66], itself built 

upon an earlier method proposed by Roos [67], is the basis for the current direct CI 

method used in COLUMBUS [68]. 
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Appendix G. The Non-Relativistic Energy Gradient 

 

This appendix outlines Shepard’s formalism for obtaining the non-relativistic 

energy gradients [3].  It is intended to be a quick overview for readers of this paper.  For 

a more in-depth understanding, please see Shepard’s referenced paper. 

The energy gradient, in the resolved basis, 

              ˆx xZ Z Z

I IR R H R R    (352) 

can be represented in the  S basis as: 

           

                       

ˆ

ˆ ˆ ˆ ˆ ˆexp exp exp exp

xZ Z Z

I I

x
S S S

I I

R H R R

R Z R K R H R K R Z R R

 

 



  
 

 (353) 

When the exponentials are expanded as a series, they form commutators with the 

Hamiltonian according to the Baker-Campbell-Hausdorff theorem: 

 

                       

             

             

ˆ ˆ

ˆ ˆ,

ˆ ˆ, ...

x xZ Z Z S S S

I I I I

x
S S S

I I

x
S S S

I I

R H R R R H R R

R H R Z R R

R H R K R R

   



 



  
 

  
 

 (354) 

where higher-order terms are ignored in this derivation [3].  Since each of the rotation 

operators is unitary, it can be expressed as  

      ˆ ˆ ˆexp exp rs rs sr

r s

A R a R E E
 

  
 
  (355) 

(cf. equation(115)).  Here, we have combined each generator with its transpose so that 

the parameters are unrestricted.  (This adjustment was primarily made to coincide with 
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Shepard’s notation [3], but the concept is unchanged.)  Thus equation (354) can be 

expressed as 

                       

             

             

ˆ ˆ

ˆ ˆ ˆ,

ˆ ˆ ˆ,

x xZ Z Z S S S

I I I I

x

S S S

I rs rs sr I

rs

x

S S S

I rs rs sr I

rs

R H R R R H R R

R z R H R E E R

R k R H R E E R

   

 

 



 
    

 

 
    

 





 (356) 

The following notational substitutions are made for simplicity: 

 

         

         

ˆ ˆ ˆ,

ˆ ˆ ˆ,

S CI

rs rs sr red

r s

S CI

rs rs sr ess

r s

z R H R E E z R f R

k R H R E E k R f R





   
 

   
 




 (357) 

where CIf is the orbital gradiant vector, and the dot product represents a sum of 

operators rather than a scalar quantity.  (There is, in fact, only one such vector; 

however, since rotations are partitioned into redundant and essential classes, the 

orbital gradient vector can be so partitioned as well.)  Then equation (356) is simplified 

as 

 

                       

         

ˆ ˆx xZ Z Z S S S

I I I I

x x
CI CI

red ess

R H R R R H R R

z R f R k R f R

   

   

 (358) 

which, expanded and evaluated at 0R , is equal to 

 

                       

         
         

0 0 0 0 0 0

0 0 0 0

0 0 0 0

ˆ ˆx xZ Z Z S S S

I I I I

x xred ess

orb orb

x xred ess

orb orb

R H R R R H R R

z R f R k R f R

z R f R k R f R

   

   

   

 (359) 
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At the reference geometry,    0CI CIR R   and so    0 0
ˆ ˆ 0K R Z R  , and so all 

their parameters must be zero.  This leads to the elimination of two terms in the above 

equation 

 

                       

         
0 0 0 0 0 0

0 0 0 0

ˆ ˆx xZ Z Z S S S

I I I I

x xred ess

orb orb

R H R R R H R R

z R f R k R f R

   

   
 (360) 

Consider the first term, expanding the Hamiltonian in its second-quantized form: 

 

                    

        

            

            

0 0 0 0 0

1
0 02

0 0 0

1
0 0 02

ˆ
xxS S S S S

I I I rs rs

rs

x
S S

rstu rstu I

rstu

x
S S S

rs I rs I

rs

x
S S S

rstu I rstu I

rstu

R H R R R h R E

g R R

h R R E R

g R R e R

  



 

 

















e

 

(361)

 

We use the density matrices (see equation (34)) to simplify equation (361): 

                           

                 

1
0 0 0 0 0 0 02

1
0 0 0 02

ˆ
x xxS S S S S S

I I rs rs rstu rstu

rs rstu

x x
S S S S

R H R R h R D R g R d R

Tr h R D R Tr g R d R

   

      
      

 
(362) 

where the nuclear derivatives now only act upon the coefficient matrices, as the 

generators, and hence density matrices, are geometry-independent. 

Now consider the second term in equation (360).  The orbital gradient vector is 

non-zero as a consequence of the CI step, which optimizes the CSF coefficients but not 

the orbitals [3].  For an MCSCF step, or a full CI, the orbital gradient vector is zero; 
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however, for the sake of generality we will assume that it is non-zero.  Its form, which is 

derived elsewhere [5] [35], is 

                
1

Z Z Z Z

orb rs I ru us su rtuv stuv tsuv I
JI

u tuv

f P h E E g e e        (363) 

where rsP is the permutation operator that exchanges orbital r with orbital s .  Although 

the unitary generators (and hence density matrices) are not symmetric, only the 

symmetric portion of those matrices will appear in the product with the symmectric 

matrices h and g .  Hence,  

 

         

               

2 1

2

Z Z Z ZCI

rs ru us rtuv stuv

u tuv

Z Z Z Z Z Z Z Z

ru us rtuv stuv su ur stuv rtuv

u tuv u tuv

f P h D g d

h D g d h D g d

  

 
    

 

 

   
 (364) 

Let us define the Fock matrices [3] [5] 

 

     

     

     

1

2

1 2

Z Z Z

rs ru us

u

Z Z Z

rs rtuv stuv

tuv

Z JI Z Z

rs rs rs

F h D

F g d

F F F





 



  (365) 

which allow the orbital gradient vector to be simplified as 

     2
Z ZCI

rs srf F F   (366) 

Since an analytic derivative is never taken of this vector, it is not necessary to further 

transform it.   

To determine the elements of the  z R vector,  pqZ R , we note the 

transformation 
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              exp exp
Z K

pq
pq

D R R R R  
 

Z D Z  (367) 

Using the Baker-Campbell-Hausdorff theorem again, we expand the exponentials and 

find the relationship 

              ,
Z K K

pq pq
pq

D R D R R R  
 
D Z  (368) 

where higher-order commutators are ignored.  We can break this commutator into its 

two component terms, which we can then express as summations: 

                     Z K K K

pq pq p q p qD R D R D R Z R Z R D R   


    (369) 

Let us take the gradient of this equation and evaluate it at the reference geometry: 

                       0 0 0 0 0 0

x x x xZ K K K

pq pq p q p qD R D R D R Z R Z R D R   


    (370) 

where we have used the fact that  0R Z 0 .  To complete the evaluation of this 

equation, consider that, within the invariant subspace of interest, the basis was resolved 

by diagonalizing the density matrix [3].  Then the equation 

    JI Z JI Z

pq pp pqD D   (371) 

must hold.  When this equality is recognized, equation (370) becomes 

 

        

              
0 0

0 0 0 0

x xZ K

pp pq pq

x xK K

p p q p q q

D R D R

D R Z R Z R D R     




 



 
 (372) 

Evaluation for p q yields 



159 

 

 

              

 
   

       

0 0 0 0

0

0

0 0

0
x xK K K

pq pp qq pq

xK

x pq

pq K K

qq pp

D R D R D R R

D R
Z R

D R D R

   




Z

 (373) 

(For p q , equation (372) is not useful for identifying  0

x

pqZ R ).   

Diagonalizing the density matrix is not the only method for resolving bases.  The 

diagonalization of Fock matrices, such as those defined in equation (365) as well as the 

Fock matrix defined by 

                     2 2
Z Z Z Z Z

pq pq pqrs pqrs rs

rs

Q R h R g R g R D R   
   (374) 

may also be used.  The analogue of equation (367) is true for these Fock matrices as 

well.  Thus, depending on the method of resolution used, we find that 

  
   

       
0

0

0 0

xK

x pq

pq K K

qq pp

F R
Z R

F R F R



 (375) 

and 

  
   

       
0

0

0 0

xK

x pq

pq K K

qq pp

Q R
Z R

Q R Q R



 (376) 

as well.  Each of these may contribute to the DCT, and so we find that the vector 

product    0 0

x CI

redz R f R has contributions equal to  

         0 0 0

x xKCI

red pq pq

p q

z R f R D R A


 
D

D  (377) 

         0 0 0

x xJI KCI

red pq pq

p q

z R f R F R A


 
F

F  (378) 

and  
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         0 0 0

x xKCI

red pq pq

p q

z R f R Q R A


 
Q

Q  (379) 

where  

 
       
       

0 0

0 0

Z Z

pq qp

pq K K

qq pp

F R F R
A

X R X R






X  (380) 

is not differentiated, and can be calculated as needed.  The first factor under each 

summation, which is a derivative, must be further transformed into the atomic basis.  

The gradient of each Fock matrix will involve gradients of one- and two-electron integral 

matrices  ,x x
h g  and gradients of density matrices  ,x x

D d  (see equations (374) and 

(365)), while transforming back to the  S basis will involve a gradient of the  RK  

matrix for both Fock and density matrix gradients.  This transformation and 

differentiation will yield three types of terms: those involving gradients of integral 

matrices, involving gradients of  RK , and involving gradients of density matrices. 

The terms involving gradients of the integral matrices will take the form 

          1
0 02

x xS S
Tr R Tr RX X

h D g d  (381) 

where  

 

        
    
    

1
0 02

1
02

1
02

2

;

;

pq pq

S S

pqrs qs pr pr ps

S

S

D A

d A D R A D R

R

R



  





Q Q

Q Q Q

F F

F F

D D A

d d A

 (382) 
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in which the operation  ; is the matrix anticommutator.  The terms involving gradients 

of the  RK matrix will all take the form 

  0

x CIk R f X  (383) 

which can be added onto the similar term in equation (360).  The terms involving 

gradients of density matrices will take the form  

  0

x

csfp R f X  (384) 

where   p R is the vector of  parameters for the rotation of CSF coefficients (see 

equation (167)) and 
csff  is analogous to CIf , but where the commutator is taken with 

the generators of  ˆexp P .  Now the vector product 

     0 0

CI CI CI
x x

CI CI CI

f f f
k R p R

f f f

  
 
   

Q F

Q D F
 (385) 

 can be cast as [3] 

              1
0 02

x xS S
Tr R Tr R  Λ λ Λ λ

h D D g d d  (386) 

Thus all terms in equation (360) are written as traces of gradients of integral matrices 

multiplied by various density matrices.  Substituting the results of (381) and (386) into 

equation (362)yields 

                     
         

                 

0 0 0 0 0

1
0 02

1
0 0 0 02

ˆ x xZ Z Z S S

I I

xS S

x xS S S S

tot tot

R H R R Tr R R

Tr R R

Tr R R Tr R R

      

    

 

Q F Λ λ

Q F Λ λ

h D D D D D

g d d d d d

h D g d

 (387) 
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These integral matrices have analytic forms in the original atomic basis to which we 

should like to transform them.  Recall that the transformation between the  C  and 

 S  bases is 

    
 

     
 

 
1 1

2 2
C CS C

R R R R
 

h S h S  (388) 

It follows then that the derivative of this equation evaluated at the reference geometry 

is 

 
   

 
     

 
 

 
     

 
 

 
     

 
 

1 1
2 2

0 0 0 0

1 1 1 1
2 2 2 2

0 0 0 0 0 0

C Cx xS C

C C C Cx xC C

R R R R

R R R R R R

 

   



 

h S h S

S h S S h S

 (389) 

Using equation (161), we find that 

 

 
 

 
     

1
2

0

1
12

0 02

C

C x xC

R

R R







 

S 1

S S

 (390) 

and equation (389) is simplified as 

 

                       
            

1 1
0 0 0 0 0 02 2

1
0 0 02

,

x x x xS C C C C C

x xC C C

R R R R R R

R R R

   

 

h S h h h S

h S h
 (391) 

Similarly, 

                 1
0 0 0 04

,
x x xS C C C

R R R R g g S g  (392) 

leading to the transformation of equation (387): 
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                   

       

            

            

0 0 0 0 0

1
0 02

1
0 0 02

1
0 0 04

ˆ

,

,

x xZ Z Z C C

I I tot

xC JI C

tot

xC C C

tot

xC C C

tot

R H R R Tr R R

Tr R R

Tr R R R

Tr R R R

   
 

 
 

  
 

  
 

h D

g d

h S D

g S d

 (393) 

in which we have used the fact that the density matrices in the two bases are the same 

at the reference geometry.  Let us simplify the arguments of the trace.  We have, using 

simplified notation: 

     , ij jk ki ij jk ki

ijk

Tr Tr   h S D hSD ShD h S D S h D  (394) 

Since h and S are symmetric, this is 

 T

ij jk ki ij jk ki kj ji ik ij jk ki

ijk ijk

   h S D S h D S h D S h D  (395) 

The density matrix is not symmetric; however, since h and S are, only the symmetric 

portion of Dcontributes to the trace.  Thus 

  12T

kj ji ik ij jk ki kj ji ik ij jk ki

ijk ijk

Tr    S h D S h D S h D S h D SF  (396) 

where the Fock matrices were defined in equation (365).  If we apply this derivation to 

the terms in equation (393), we find that 

 
                  11

0 0 0 02
,

x xC C C C C

tot totTr R R R Tr R      
  

h S D S F  (397) 

and, through a similar derivation,  

 
                  21

0 0 0 04
,

x xC C C C C

tot totTr R R R Tr R      
  

g S d S F  (398) 

Equation (393) can consequently be written 
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                   

               

0 0 0 0 0

1
0 0 0 02

ˆ x xZ Z Z C C

I I tot

x xC C C C

tot tot

R H R R Tr R R

Tr R R Tr R R

   
 

    
   

h D

g d S F

 (399) 

The transfer to the atomic basis is relatively simple.  Any operator in the  C basis can 

be expressed in the   basis by the transformation 

            0 0

C TR R R R


A C A C  (400) 

(see equation (157)).  Since  0RC is constant with respect to nuclear coordinates, 

            0 0

x xC TR R R R


A C A C  (401) 

however, density matrices transform as [3] 

             1 1

0 0

TC
R R R R

 D C D C  (402) 

Thus equation (399) can be restated as 

                        

            

            

1

0 0 0 0 0 0 0

11
0 0 0 02

1

0 0 0 0

ˆ
Tx xZ Z Z JIT

I I tot

Tx JIT

tot

TxT

tot

R H R R Tr R R R R

Tr R R R R

Tr R R R R

 

 

 

  





 
  

 
  

 
  

C h D C

C g d C

C S F C

 (403) 

Since 

    Tr TrAB BA  (404) 

it follows that the last matrix in each trace argument can be brought to the front, and so 

the transformation has no effect on the form of the trace: 

                     

               

0 0 0 0 0 0

1
0 0 0 02

ˆ x xZ Z Z

I I tot

x x

tot tot

R H R R Tr R R R

Tr R R Tr R R

 

   

   
 

    
   

h D

g d S F
 (405) 
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Thus the gradient is now written with derivatives only of matrices whose elements are 

known analytically, i.e. derivatives of 

 

       

           

       

* 21
2

* *

1 2 1 2 1 2

1 2

*

; ;

1
; ; ; ;

; ;

ij i el j

ijkl i k j l

ij i j

Z
R dr r R r R

R r

R drdr r R r R r R r R
r r

R dr r R r R

 

 





 

   

 

 
    

 

 
  

 





 



h

g

S

 (406) 

while the density matrices can be calculated as needed.  Thus there is no need to use 

finite differences to estimate the gradient, nor to create analytic functions of the CI 

coefficients. 

The CI DCT is derived in the same manner, with the exception that transition 

density matrices are used, and the entire quantity must afterward be divided by the 

energy difference: 

 

               

         

               

0 0 0 0 0

0 0 0

1
0 0 0 02

ˆx xZ Z ZCI

JI J I

x JI

tot

x xJI JI

tot tot

E R f R R H R R

Tr R R R

Tr R R Tr R R

 

   

  

 
 

    
   

h D

g d S F

 (407) 
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Appendix H. The CSF DCT 

 

The CSF DCT is [5] [49] 

          :
x

xCSF J I

JI j i j iR

ij

f R c R c R r R R 


  (408) 

(see equation (244) in the main text).  Unlike the CI DCT, in this case the gradient is 

taken of the basis function.  Since the Gel’fand-Tsetlin basis functions can be written as 

linear combinations of Slater determinants, let us consider the gradient of a 

determinant: 

      ... ... ... ... ...
x x x xa b c a b c a b c a b cR R R R
              

   
     (409) 

The !n n  terms in this expansion each contain nuclear derivatives of functions of all 

electronic variables; however, one can also separate the terms into a set containing 

nuclear derivatives of functions only of electron 1, a set containing nuclear derivatives 

of functions only of electron 2, etc.  For example, consider the simple Slater determinant 

         
1

1 2 1 2
2

a b a b b a        (410) 

Its nuclear gradient can be written as 

                    

                    

1
1 2 1 2 1 2 1 2

2

1
1 2 1 2 1 2 1 2

2

x x x x x

x x x x

a b a b b a a b b aR R R R R

a b b a a b b aR R R R

         

       

    
    

   
   

   

   

 (411) 

which can be separated into two terms as discussed above.  Thus we can recast the 

nuclear derivative as 
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  ˆ
xR

i

i


  (412) 

where 

      ˆ ; ;
xk k ijR

i j R i R   


  (413) 

Since 
xR




is then effectively a one-electron operator, it can be represented in the 

molecular orbital basis by the product of generator matrices with integral matrices 

much like the one-electron Hamiltonian (see equation (31)) 

 
,

ˆ
x rs rsR

r s

E 


  (414) 

where 

      ˆ; ;rs r si R i i R     (415) 

We can substitute this definition into definition (408): 

 

                     

           

       

           

† †

†

ˆˆ; ; ; ;

ˆˆ

ˆˆ

x

x

Ii Jj i j Ii Jj i rs r s jR

ij ij rs

Ii i rs Jj j r s

rs ij

I rs J r s

rs

IJ Z Z Z

rs r sR

rs

c R c R r R r R c R c R R E i R i i R R
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 (416) 

where all pieces can be assumed at this point to be expressed in the  Z basis.  Thus, 

rather than acting on the Gel’fand-Tsetlin basis functions, we can assume the gradient 

acts upon the molecular orbitals directly.  We can now transform this form of the CSF 
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DCT back into the  C basis just as we have done with the CI DCT.  The derivative of a 

MO evaluated at the reference geometry can be expressed as the transformation 

 

             
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 

     
 

    
 

  

K Z

K Z

K Z
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 (417) 

where all other terms contain at least one factor of  0K̂ R or  0Ẑ R and thus evaluate 

to zero.  Transforming from the  S basis back to the  C  basis is effected by 
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 
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 (418) 

(see equation (163)), which, using equation (390), simplifies to  
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Since 

                0 0 0 0

Z K S C

r r r rR R R R       (420) 

it follows that integrating equation (419) against    0

Z

r R
 
yields 
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Elements of    0x

C

R
R


S are 
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and so the first two terms on the right-hand side of equation (421) can be combined: 
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If we use the parameter-generator form of K and Z (see equation (355)), 
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then the final terms in equation (423) become 
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as only the parameters ( r sk  and r sz   ) have nuclear dependence, while the generators (

r sE   and s rE   ) participate in the integral.  Because of the annihilation/creation form of 

the generators (see equation (30)), those integrals become delta functions: 
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Because of the restricted sum, only one of those delta products will ever be non-zero; 

thus these equations reduce to 

 

            

            

0 0 0 0

0 0 0 0

x x

x x

C C

r s rsR R

C C

r s rsR R

R R R k R

R R R z R

 

 

 
 

 
 





K

Z
 (427) 



170 

 

The various forms of  0x rsR
z R


 were discussed in equations (373)-(376).  From 

equation (423) let us define 
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(which is antisymmetric) so that the entire CSF DCT becomes 
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where we have defined  
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(see equation (380)) and the antisymmetric part of the one-electron density matrix is 

sufficient for the trace with the CSF orbital gradient vector.  The last three terms are 

treated analogously to the terms in equations (377)-(379), with the appropriate 

substitution of the CSF IJ

pqA X term  The second term joins them in a manner similar to 

(385),  with the resulting form  
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where CSF IJ XD and CSF IJ X
d are defined analogously to those found in equation (387). 

These traces can now be transformed into the atomic basis similar to equation (403): 

 

       

        
      
      

        
         

†

0 0 0 0

0 0

0

1
02

0 0

1
0 02

; ;
xIi Jj i jR

ij

xIJ a CSF

orb

x CSF IJ CSF IJ CSF IJ CSF IJ

x CSF IJ CSF IJ CSF IJ CSF IJ

xIJ a CSF

orb

x xCSF IJ CSF IJ

tot tot

c R c R r R r R

Tr R f R

Tr R

Tr R

Tr R f R

Tr R Tr R

 





 

 

 




   

   



 



F Q Λ λ

F Q Λ λ

D

h D D D D

g d d d d

D

h D g d

 (432) 

At this point, the CSF DCT has been defined in terms of density matrices and 

gradients of integral matrices at the reference geometry.  Combining this with the CI 

DCT term gives the whole DCT in terms of functions which can be differentiated 

analytically. 
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Appendix I. Angular Momentum 

 

Definition 

Classically, we consider angular momentum as the cross product of an object’s 

linear momentum with its position with respect to some fixed point [25]: 

 J r p   (433) 

Since it is the cross product of two polar vectors, angular momentum is a pseudovector; 

that is, it rotates like a polar vector, but it remains invariant under inversion, unlike a 

polar vector.  However, in this paper we will be dealing with special unitary groups 

which do not allow inversion, so angular momentum can be treated summarily as if it 

were a polar vector. 

As with the Hamiltonian, we will derive the quantum mechanical equivalent of 

equation (433) by turning the classical quantities into operators [61]: 

 ˆ ˆ ˆJ r p   (434) 

Recalling the quantum mechanical definition of the linear momentum operator, (284), 

we see that the angular momentum operator is, component-wise [46], 

       ˆˆ ˆ ˆ
z y x z y x

J i y z i i z x j i x y k     
     

       (435) 

The formulation in equation (434) was used in Appendix B when exploring the spin-orbit 

Hamiltonian, where L̂  was the orbital angular momentum of the electron.  However, 

there we also found the set of spin operators ˆ
i of an electron was considered a set of 

angular momentum operators.  An electron, though massive, is considered a point 
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particle in quantum chemistry, so it is a fallacy to attempt to connect this spin angular 

momentum with that of a spinning orb, and equation (434) does not apply.  What we 

need, then, is a more general definition of angular momentum.   

In an intuitive sense, angular momentum generates rotation.  In a mathematical 

sense, angular momentum operators are the generators of rotation.  A rotation Û  in 

three-space can be expressed as the exponentiation of it rotational parameters 

multiplied by the generators [34]: 

  ˆ ˆ ˆ ˆexp x x y y z zU J J J      (436) 

This is certainly not the only parameterization of a three-dimensional rotation, 

but it is as valid as any.  The set of rotations is a Lie group, and so the set of angular 

momentum operators forms its underlying Lie algebra.  Lie algebras are defined by their 

commutation relations [34].  In this case, the operators obey the relations 

 

ˆ ˆ ˆ,

ˆ ˆ ˆ,

ˆ ˆ ˆ,

x y z

y z x

z x y

J J i J

J J i J

J J i J

  
 

  
 

  
 

 (437) 

which is a specific case of the general Lie algebra commutation relation 

 
, ,

ˆ ˆ ˆ,i j ijk k

i j k

O O c O  
    (438) 

It is easy to see that the angular momentum as formulated in equation (434) obeys the 

relations in equation (437) given the fundamental commutation relation between 

position and linear momentum, 
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  ˆ ˆ, , .xx p i etc  (439) 

however, we say that any set of operators that obeys the commutation relations 

presented in equation (437) are angular momentum operators [46].  Thus, even though 

the spin operators do not conform to the formulation in equation (434), they do obey 

the proper commutation relations  and thus can be considered angular momentum 

operators. 

 

Eigenvalue equations 

As angular momentum is an observable quantity, it obeys an eigenvalue 

equation.  In this section we will discover the possible eigenvalues and eigenfunctions 

associated with the angular momentum operators. 

Commuting Operators 

It is clear from equation (437) that none of the angular momentum operators 

commute; this implies that only one of the quantities, xJ , 
yJ , or zJ , can be observed 

precisely at any given moment of measurement [26].  This also implies that they form a 

rank 1 algebra (i.e., the largest abelian subalgebra is one-dimensional) and thus has one 

Casimir invariant operator [34]: 

 2 2 2 2ˆ ˆ ˆ ˆ
x y zJ J J J    (440) 

(This operator is discovered by solving the secular equation for an arbitrary element in 

the algebra; this process is discussed in Gilmore [34] but I will not elaborate here.)  The 

Casimir invariant is a multiple of the identity matrix, and thus commutes with all 
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elements of the algebra.  This further implies that any one of the aforementioned 

quantities can be observed concurrently with the Casimir invariant; typically we choose 

zJ .  Thus we have a maximal set of two commuting observables in the set of angular 

momenta, zJ  and 2J , which share a set of eigenvectors.  Geometrically, this implies 

that, while we cannot know the precise direction of the angular momentum vector, we 

can know its length and its projection onto the z-axis.  

 
 

 
 

Figure 43. Uncertainty in angular momentum 
 
 
 

Eigenvalues 

Thus we have the following eigenvalue equations: 

 

2ˆ

ˆ

j

z m

J jm jm

J jm jm








 (441) 

While the operations ˆ
xJ jm  and ˆyJ jm  are of lesser interest, the operations Ĵ jm  

and Ĵ jm , where we define 

x 

y 

z 

2J  
zJ
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ˆ ˆ ˆ

ˆ ˆ ˆ

x y

x y

J J iJ

J J iJ





 

 
 (442) 

which are adjoints of each other, are of particular use.  Using these in place of the ˆ
xJ  

and ˆ
yJ  operators, we have a new Lie algebra with commutation relations [46] 

 

2

ˆ ˆ ˆ,

ˆ ˆ ˆ, 2

ˆ ˆ, 0

z

z

J J J

J J J

J J
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 
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 
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 

  
 

 (443) 

Since 2Ĵ and Ĵ  commute, the eigenvalue equation 

 2ˆ ˆ ˆ
jJ J jm J jm   (444) 

implies that Ĵ jm  is also an eigenvector of 2Ĵ with eigenvalue 
j , while the equation 

    ˆ ˆ ˆ ˆ ˆ ˆ1z z mJ J jm J J J jm J jm         (445) 

implies that it is also an eigenvector of ˆ
zJ  with eigenvalue  1m  .  Furthermore, 

equation (445) implies that  

 ˆ 1J jm C j m    (446) 

which shows that the eigenvalues of ˆ
zJ differ by integer steps.  Combining definition 

(440) with definition (442), we find a new form of the Casimir invariant, 

 2 21 1
2 2

ˆ ˆ ˆ ˆ ˆ ˆ
zJ J J J J J       (447) 

We can take the expectation value of this equation, 
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 (448) 

which implies the quantity 2

j m   must be positive.  Since both 
j  and m  are real, this 

further implies that 
j  is non-negative and that m  is bound above and below by 

j  

[69].  Let 
maxjm  be the vector whose eigenvalue of 

maxm  is maximal.  Then it is true 

that 

 
max

ˆ 0J jm   (449) 

and hence that 

  2 2

max max
ˆ ˆ ˆ ˆ ˆ 0z zJ J jm J J J jm       (450) 

Expanding this last equation, we find 

 
 

 
max max

2 2

max
ˆ ˆ ˆ0

1

z z

j m m

J J J jm

  

  
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 (451) 

Thus we conclude that for maximal m ,  

  
max max

1j m m     (452) 

By analogous argument, for the minimal value 
minm  

  
min min

1j m m     (453) 

Comparing equations (452) and (453) leads to the conclusion that  

 
max minm m    (454) 
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Since the values of m  differ by integer steps (see equation (446)), this conclusion 

implies that m  must take on integer or half-integer values.  If we let 
maxm be assigned 

the symbol j , then the eigenvalue of 2Ĵ  is  1j j   and if we let m  be assigned the 

symbol m , m ranges from j  to j .  The equations are 

 
 2ˆ 1

ˆ
z

J jm j j jm

J jm m jm

 


 (455) 

Thus not only is the z-projection quantized, it is limited by the total angular momentum 

(see Figure 44).  Table 4 shows the first several values of j  and the possible values of .m   

Apart from the eigenvalue equations, we also have the equations involving Ĵ and Ĵ .  

Using the relationship 

 2 2ˆ ˆ ˆ ˆ ˆ
z zJ J J J J   (456) 

 

 

Figure 44. Angular momentum allowed observables 
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Table 4. Angular momentum values 

j  m  

0 0     

1/2 -1/2 1/2    

1 -1 0 1   

3/2 -3/2 -1/2 1/2 3/2  

2 -2 -1 0 1 2 

 
 
 
We find through integration that 

 
   

2 2

2

ˆ ˆ ˆ ˆ ˆ

1 1

z zjm J jm jm J J jm jm J jm jm J jm

j j C m m

 

  
 (457) 

which leads to the equations 

    ˆ 1 1 1J j m j j m m j m       (458) 

The eigenvalue equations (455) paired with the equations immediately above will be 

most useful in forming the matrix representation of the angular momentum operators 

in the succeeding section. 

It is an interesting aside to note that, although angular momentum may have 

integer or half-integer values, the two sets never coincide.  That is to say, a system with 

integer spin can never be made to have half integer spin, and vice versa.  A system with 

an even number of electrons can be a singlet, triplet, quintuplet, etc., with the available 

spin states only being limited by the number of electrons; however, it will never be a 
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doublet, quartet, sextet, etc.  The opposite is true for odd-electron systems.  Fermions 

may be turned into one another, but can never be transformed into bosons.  Orbital 

angular momentum only manifests itself in integer steps (see the spherical harmonics, 

below). 

Physical Eigenfunctions 

The eigenvalue equations (441) form solvable differential equations when the 

operators 2Ĵ and ˆzJ are derived from equation (435) and the eigenvalues are replaced 

with  1j j   and m .  Rather than Cartesian coordinates, it is easiest to solve these 

equations in spherical coordinates.  By representing these equations in physical space, 

we are limited to representing angular momenta which reside in physical space (e.g., 

orbital angular momentum).  This representation is limited to integer-value angular 

momenta, and so will not include spin (which does not reside in physical space).  I will 

not belabor the transformation nor the solution at this point; suffice it to say that using 

the relationships 

 

sin cos

sin cos

cos

x r

y r

z r

 

 









 (459) 

the angular momentum operators become in spherical coordinates [46] 

 
2

2

2 2

ˆ

1 1ˆ sin
sin sin

zJ i

J




    


 



    
     

    

  (460) 
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When these are substituted into their respective eigenvalue equations, they form the 

familiar differential equations whose solutions are the spherical harmonics,  ,lmY   , a 

complete set of orthonormal functions, whose formula I include here for completeness: 

 

 
   

   
   

1
2

2

,

1 !1 2 1
, sin cos 1 exp

2 ! 2 ! cos2

lm

l mm
l

m

lm l

jm Y

l ml d
Y im

l l m d

 

    






    
    

   

 (461) 

Because the spherical harmonics are complete and orthonormal, they provide a very 

useful basis from which to build wavefunctions.  When multiplied by a radial function, 

these functions are able to span the three-dimensional wave functions of single 

electrons; the direct product of N sets of these functions can form a physical basis for a 

multi-electron system. 

Rotation of Eigenfunctions 

When a rotation is applied to a spin eigenfunction, it becomes a linear 

combination of other spin eigenfunctions.  However, these rotations do not allow mixing 

outside the irrep to which the eigenfunction belongs; that is, the total spin does not mix 

[46]: 

  '

'

ˆ ˆ 'j

m m

m

R jm D R jm  (462) 

where the  '
ˆj

m mD R are known as the Wigner D matrices [37].   
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 Matrix Representation 

The commutation relations in equation (437) define (to within a constant) the Lie 

algebra  2su  [34]; thus the physics of angular momentum is inexorably connected to 

the mathematics of the  2su  algebra.  We gain great satisfaction from this association 

as the physics of rotation, generated by angular momentum, and the group of rotations, 

 3SO , (one of the groups) generated by  2su , should be connected, as we intuitively 

expect. 

There are an infinite number of trios of matrices that obey the  2su  

commutation rules.  The defining representation is the set of 2 2  matrices 

 
0 0 1 0

, ,
0 1 0 0

i i

i i

      
     
     

 (463) 

which the reader will find obey the relations in equation (437) where i is replaced with 

2 . An adjustment of phase leads to the Pauli spin matrices [46]: 

 

0 1

1 0

0

0

1 0

0 1

x

y

z

i

i







 
  

 

 
  

 

 
  

 

 (464) 

which form another equally valid defining representation of  2su  generators.   

[Note that the matrices in the collection (463) are antihermitian (symmetric imaginary 

components and antisymmetric real components) while those in (464) are hermitian.  In 
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general, the physicist prefers hermitian operators, as, by postulate, they represent 

observable quantities and obey real eigenvalue equations; however, exponentiated 

antihermitian matrices are unitary, which are more appropriate for transformations.  

Thus when one wishes to study angular momentum per se, an hermitian representation 

is fitting; however, when one wishes to use angular momentum as a means to the end 

of rotations, an antihermitian representation may be more applicable.] 

The regular representation is the set of 3 3 matrices derived directly from the 

commutation rules [34]:  

 

0 0 0 0 0 1 0 1 0

0 0 1 , 0 0 0 , 1 0 0

0 1 0 1 0 0 0 0 0

     
     

     
          

 (465) 

In the previous section, we found a good basis to work in, the jm  basis.  Using 

equations (455) and (458), we can form the matrix representations of 2ˆ ˆ ˆ, ,zJ J J , and Ĵ  

in this infinite but discrete basis.  Figure 45 Shows the first 10 10  block of each 

operator, where zeros have been excluded, although the block-diagonal form has been 

emphasized.  ˆ
xJ  and ˆyJ can be determined using equation (442).  Each block or irrep 

labels a different value of j .  For this reason, each block can be used separately as the 

case may require.  For instance, the 2 2  blocks (which are the defining representation) 

can be used to generate rotations on two-component spinors such as spin, while the 

3 3 blocks (which are a transformation of the regular representation) generate  
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Figure 45. Irreps of angular momentum operators 
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rotations of rank-1 tensors, such as p-states and vectors in classical three-dimensional 

space.  In this basis, both 2Ĵ and ˆzJ  are diagonal, as expected.  Notice that each block of

2Ĵ is an identity matrix scaled by its eigenvalue  1j j  .  The elements of ˆzJ  are the 

eigenvalues m .   

 
Coupling 

Addition 

In the previous section, we identified the set of simultaneous eigenfunctions of 

2Ĵ and ˆzJ , jm .  If a system has two angular momenta associated with it, it is possible 

to form an eigenfunction of both sets of operators by taking the direct product of 

eigenfunctions from either set: 

 1 2

1 1 2 2

1 2

j j
j m j m

m m
   (466) 

This is an eigenfunction for 2

1Ĵ , 2

2Ĵ , 1
ˆ

zJ ,and 2
ˆ

zJ  .  Alternatively, we can add the two 

angular momenta together and form an eigenfunction of  1 2
ˆ ˆ

z zJ J ,  
2

1 2
ˆ ˆJ J , 2

1Ĵ , and 

2

2Ĵ  [46].  While these two formulations are equally valid and differ only by a unitary 

transformation, the latter has an advantage for systems in which the angular momenta 

are allowed to couple.  For such systems, the set of quantum numbers 1 2 1, , ,j j m and 2m

are not good quantum numbers since they are allowed to change.  The good quantum 

numbers, i.e., the eigenvalues that will not change, will be the total angular momentum 

and its z-projection.  Even in the non-coupling case, this latter formulation forms a more 
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compact notation, with only two eigenvalues per function to consider, rather than 2N .  

What more, this latter formulation allows the system to be easily expressed in the irrep 

basis discussed in the previous section. 

Example: adding electron spin 

Building a basis for the GUGA depends heavily upon spin adaptation, which is the 

process of transforming eigenfunctions into pure states of total j  [20].   The following 

example of spin coupling illustrates that transformation.   

Consider a system of two spin-1/2 particles such as electrons.  Considering only 

the spin portion, each individual electron wave function can have either of the forms 

 
1 1 1

2 2 2

1 1 1
2 2 2

,

,

s

s

s m

s m



 

   

   
 (467) 

We indicate the direct product merely by juxtaposition, so that the uncoupled functions 

are 

 









 (468) 

where 

 ' '      (469) 

Now consider transforming to spin-coupled eigenfunctions.  Since each electron has 

spin-1/2, the total spin can either be 1/2+1/2=1 or 1/2-1/2=0 (See Figure 46). The spin-1 

eigenfunction has three possible z-projections, -1, 0, or 1, and thus forms a triplet.  The 
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spin-0 eigenfunction has no z-projection, and is a singlet.  We can indicate these 

eigenfunctions as 

 

11

10

1 1

00


 (470) 

We now need a way to define these spin-coupled functions in terms of the original, 

uncoupled functions which are more intuitive.  The transformation 

 
1 2

1 2 1 2

,m m

jm m m m m jm   (471) 

has coefficients we define as 

 
1 21 2 jmm mm m jm c  (472) 

known as Clebsch-Gordan coefficients [46], which are tabulated in various locations.  

Figure 47 shows the Clebsch-Gordan coefficients for small angular momenta [70].  Using 

these coefficients, we find the following relationships: 

 
 

 

1

2

1

2

11 10

1 1 00

  

  

  

   
 (473) 

This result was gleaned from the 1/2x1/2 block of Figure 47.  Now consider adding a 

third electron.  Since the first two are already coupled, we are coupling an angular 

momentum of 1 or 0 to an angular momentum of 1/2.  Thus we use the 1x1/2 block to  

find the first set of functions, and the second set (0x1/2) is trivial.  We can now have 

total spins of 3/2 or 1/2 (see Figure 48).  Note that there are two ways to have a spin-
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1/2 system; either coupling 1 to -1/2 or coupling 0 to 1/2.  Using Figure 47 again, we find 

the following eigenfunctions: 

 

 

 

  
 

  
 

3 3
2 2

3 1 1
2 2 3

3 1 1
2 2 3

3 3
2 2

1

61 1
2 2

1

2

1

61 1
2 2

1

2

2

2



  

  



  

 

  

 









  

  



  
 



  
 



 (474) 

Now we have a quartet and two degenerate doublets which give us the 32 8

eigenfunctions.  This process can continue indefinitely, coupling the spins of as many 

electrons as are in the system in question.  As the number of electrons increases, so 

does the degeneracy of the multiplets.  Figure 49 shows these degeneracies as the spin 

functions are constructed genealogically [39] [71]. Each path through the graph from 

left to right represents a different spin function. 

 Coupled rotated spin eigenfunctions 

When we take the direct product of rotated eigenfunctions we can apply 

equation (466) to equation (462): 
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Figure 47. Clebsch-Gordan Coefficients [70] 
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Figure 48. Addition of spin for three electrons 
 
 
 

Figure 49. Genealogical construction of spin functions 
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   

   

   

   

' '

' '

' '

' '

' '

' '

' '

' '

ˆ ˆ ˆ ˆ' '

ˆ ˆ ' '

ˆ ˆ
' '

ˆ ˆ
' '

k j

q q m m

q m

k j

q q m m

q m

k j

q q m m

q m

k j

q q m m

q m JM

R kq R jm D R kq D R jm

D R D R kq jm

k j
D R D R

q m

k j
D R D R J M J M

q m

  

 





 







 (475) 

where J ranges from k j to k j  and M ranges appropriately for each J ; the final 

term in the last equation is the Clebsch-Gordan coefficient. 

 

Wigner-Eckart Theorem 

For a given value of j , the set of simultaneous eigenvectors of 2Ĵ  and ˆzJ , 

, ( 1) ,... 1 ,j j j j j j j j    , form a tensor of rank j .  For instance, for 0j  , the 

only eigenvector is 00  and forms a rank-0 tensor by itself.  For 1j  , the three 

eigenvectors 1 1 , 10 , and 11  form a vector, or rank-1 tensor.  Any tensor whose 

elements  ,T k q , when rotated, mix only among themselves is known as a spherical 

tensor operator [46].  Clearly this is the case for the tensors of spin eigenfunctions (see 

equation (462)).  Each element of the spherical tensor operator, when applied to a spin 

eigenfunction, will thus act like the direct product of two angular momentum 

eigenfunctions: 

  , ' '
' '

k J
T k q d J M d

q M
   (476) 



192 

 

where d may be a collection of non-angular momentum eigenvalues which further 

identify the function.  By completeness we can write an arbitrary eigenfunction 

' ' ''d J M as 

 
', '

', '

' ' '' ' ' ''
' ' ' '

' '' '
' ' ' '

q M

q M

k J k J
d J M d J M

q M q M

k J k J
J M d

q M q M



 





 (477) 

Let us now integrate this equation against the eigenfunction d K Q : 

 
', '

' ' '' ' '' '
' ' ' 'q M

k J k J
d K Q d J M d K Q J M d

q M q M
    (478) 

multiply both sides by ' ''
k J

J M
q M

, 

', '

' ' '' ' ''

' '' ' '' '
' ' ' 'q M

k J
d K Q d J M J M

q M

k J k J k J
d K Q J M J M d

q M q M q M



 

 (479) 

and sum over all 'J and ''M : 

', ''

', '' ', '

' ' '' ' ''

' '' ' '' '
' ' ' '

J M

J M q M

k J
d K Q d J M J M

q M

k J k J k J
d K Q J M J M d

q M q M q M



 



 

 (480) 

The last integral, a Clebsch-Gordan coefficient, is real and is its own conjugate: 

', ''

', '' ', '

' ' '' ' ''

' '' ' '' '
' ' ' '

J M

J M q M

k J
d K Q d J M J M

q M

k J k J k J
d K Q J M J M d

q M q M q M



 



 

 (481) 
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Through completeness, this forms a delta function on the right side: 

 

' '

', '' ', '

' ' '' ' '' '
' '

'

q q M M

J M q M

k J k J
d K Q d J M J M d K Q d

q M q M

k J
d K Q d

q M

   

  

 
(482) 

while on the left side, the integral over the spin functions also forms a delta function: 

 ' '
k J k J

d K Q d K Q K Q d K Q d
q M q M

    (483) 

Let us substitute equation (476) into equation(483): 

  ' , '
k J

d K Q d K Q K Q d K Q T k q d J M
q M

  (484) 

and define 

 ' || || 'kd K Q d K Q d K T d K  (485) 

to be the reduced matrix element of the spherical tensor operator kT .  Thus we have 

that the matrix element of a spherical tensor, 

  , ' || || 'k

k J
d K Q T k q d J M K Q d K T d K

q M
  (486) 

has been separated into geometrical (the Clebsch-Gordan coefficient) and dynamical 

(the reduced matrix element) components [46].  This separation allowed the reduced 

matrix element to be treated separately, which led to the definition of spin-orbit 

generators in terms of spin-free unitary generators [44]. 
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Appendix J. The Symmetric Group 

 

The symmetric group is the group of all (finite) permutations. It contains, as 

subgroups, the permutations of N objects, NS , each with !N  elements.  It bears 

importance not only because of the permutation of electrons, but also because of 

Cayley’s theorem, which states that any finite group is isomorphic to a symmetric group 

[72]. 

 

Cyclic notation 

Elements of this group are best expressed in cyclic notation [72]; for example, 

the symbol 1 3 2  indicates that the first object moves to where the second object was, 

the third object moves to where the first object was, and the second object moves to 

where the third object was (this is the right-to-left convention; a left-to-right convention 

is equally valid).  A cycle containing only two numbers is a transposition; a transposition 

of the form  1i i 
 
is called an elementary transposition.  A product of cycles, e.g. 

  1 2 1 3 , results in the permutation that takes 1 to 3, 3 (to 1) to 2, and 2 to 1.  A few 

important theorems about the symmetric group in cyclic notation are: 

1. Any permutation can be expressed as a product of transpositions or elementary 
transpositions; if the number of transpositions is even, the parity of the 
permutation is even (likewise for odd) 
 

2. The set of even permutations in a group forms a subgroup called the alternating 
group 
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3. Cycles do not generally commute unless they are disjoint; i.e., they have no 
numbers in common 
 

4. Any permutation can be expressed as a non-unique product of disjoint cycles 

A number which is not permuted may be noted as a cycle by itself, or simply left off 

entirely.  For example, the transpositions  1 2 ,   1 2 3 , and    1 2 3 4  are all 

equivalent.  In this way, it is clear that the transposition  1 2 is not only an element of 

2S , but also of 3S , 4S , ad infinitum.  In fact, every group NS  is a subgroup of 1NS  , per 

the subgroup chain 

 1 2 3 1... N NS S S S S      (487) 

 

 Young tableaux 

The regular representation of a permutation kp in the group NS is an ! !n n  

matrix.  The basis vectors for this representation are constructed as 

 
1

1

1

k k

k k

p p

p p




 (488) 

(the latter property being true because symmetry operators are unitary [37]).  We then 

construct the elements as 

   
11 if 1

| |
0 otherwise

i k j

k i k jij

p p p
R p p p p

 
  


 (489) 

In this form, the identity element will be diagonal, but in general the other permutations  

will have no structure.  The irreducible representation basis vectors are specific linear  

combinations of the vectors in definition (488) which can be labeled by Young tableaux 
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[39].  Each Young frame of N  boxes labels an irrep of 
NS .  For the group 

NS , we take 

the N objects to be permuted (usually the numbers 1…N) and disperse them into each 

of the Young frames of n boxes using the following rules [39]: 

1. No number is to be repeated 

2. The number must be larger than the number to the left or above it   

The frames filled with numbers by these rules are standard Young tableaux, and each 

one is a basis vector for the irreducible representation.  Figure 50 explicitly shows all the 

Young tableaux that label 5S  irrep basis vectors.  Each basis vector is labeled by a pair of 

those tableaux, but the pair must have the same frame.  Thus, if k tableaux have the 

same frame in a group, they will be used to label 2k  basis vectors.  Figure 51 shows an 

example basis vector label using two tableaux of the same shape.  Using Figure 50, we 

see then that the 5S irrep will have 2 2 2 2 2 2 21 4 5 6 5 4 1 120 5!         basis vectors, 

the same as the regular representation.  In the SGA, each box represents a spin-orbital, 

and each number represents an electron; thus the SGA involves permuting electrons 

among orbitals.  Hence the number of electrons N  matches the number of boxes in 

.NS
 

 

The symmetrizer and antisymmetrizer 

Two operators, the symmetrizer and the antisymmetrizer, relate the standard 

Young Tableaux to the operations they label [39].  The symmetrizer is the product over  
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1  1 2 3 4  1 2 3  1 2 3  1 2  1 2      

2  5     4 5   4    3 4  3       

  3           5    5   4  1 2 3 4 5 

4  1 2 3 5  1 2 4         5       

5  4     3 5   1 2 4  1 2         

           3    3 5  1 3      

  1 2 4 5  1 2 5  5    4   2       

  3     3 4          4       

           1 2 5  1 3  5       

  1 3 4 5  1 3 4  3    2 4         

  2     2 5   4    5   1 4      

                  2       

       1 3 5  1 3 4  1 3  3       

           2 4   2    2 5  5       

           5    4          

                  1 5      

       1 4 5  1 3 5  1 4  2       

       2    2    2 5  3       

       3    4    3   4       

                         

Figure 50. Young Tableaux for S5 

 
 
 

 

1 2  1 4 

3 5  2 5 

4   3  

Figure 51. Example basis vector label for the S5 irrep 
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all rows of the sum of all possible permutations in a single row of a tableau.  The 

antisymmetrizer is the product over all columns of the sum of all possible even 

permutations and negative odd permutations in a single column of the tableau.  For 

example, for the tableau 

1 3 

2  

 

the first row, consisting of 1 and 3, includes the possible permutations  1  and  1 3 ; 

the second row only has the number 2, and so the only permutation is the identity  2 .  

Thus the symmetrizer is 

          2 1 1 3 1 13      (490) 

The first column, consisting of 1 and 2, includes the possible permutations  1 , which is 

even, and  1 2 , which is odd.  The second column only has the number 3, so the only 

permutation is identity,  3 , which is even.  Thus the antisymmetrizer is 

           3 1 1 2 1 1 2      (491) 

The operation that the tableau labels is the product of the symmetrizer and the 

antisymmetrizer.  Thus the above tableau labels the operation 

                1 1 3 1 1 2 1 1 2 3 1 3 1 2            . (492) 
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An example: The S3  irreducible representation 

Consider as a thorough example the group 3S .  Using the above prescription, the 

Young tableaux are associated with the operations 

1 2 3              1 1 2 3 1 3 2 2 3 1 3 1 2      

          

1 2           1 1 3 2 1 3 1 2    

3          

          

1 3           1 1 2 3 1 3 1 2    

2          

          

1                1 1 2 3 1 3 2 2 3 1 3 1 2      

2          

3          

 

Note that all these operations are orthogonal and, to within a constant, idempotent. 

Using the formulation in equation (488), these tableaux, which are now seen to be 

idempotent projectors, can be used to create the basis vectors 

       

 1 2 3     1

6
1 1 1 1 1 1  

       

       

 1 2      1
2

1 1 0 0 1 1   

 3      

       

 1 3      1
2

1 0 1 0 1 1   

 2      
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  1      1

6
1 1 1 1 1 1    

  2     

  3     

where normalization has been enforced.  Note that there are only four basis vectors 

here, but 3S has 6.  The two projectors from the dog-leg irrep can further be split each 

into a pair of nilpotent projectors.  Consider the operation 

1 2  2 3  1 3 

3   2  

 

which yields the operation proportional to 

                                                                1 2 3 1 3 2 2 3 1 3     (493) 

Likewise, the operation 

1 3  2 3  1 2 

2   3  

 

yields the operation proportional to 

                                                                   1 2 3 1 3 2 2 3 1 2     (494) 

Both of these operations are nilpotent and are said to split the two projectors they use 

because they have the relationship 

 1 2  1 3   1 3  1 2  
  

1 2 

 3   2    2   3   3  

                 

 1 3  1 2   1 2  1 3  
  1 3 

 2   3    3   2   2  

 

       
 1 3  1 2  
 2   3   

 

       
 1 2  1 3  
 3   2   
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These projectors can be used to construct two additional basis vectors, just like the 

idempotent projectors.  This action brings the total number of basis vectors to six, as 

required.  These six vectors will block diagonalize all permutations of 3S  into a1 1  

symmetric block, a 1 1  antisymmetric block, and two 2 2  blocks.  A Hamiltonian 

which commutes will all those permutations will also be thus block diagonalized in this 

basis.  The interested reader may wish to consult Harter [37] for a parallel approach to 

finding a basis for 3vC . 

 

Spin functions 

As in the UGA, in the SGA each eigenfunction can be labeled by a pair of 

conjugate tableaux, one spatial and the other spin.  Although the SGA uses the Young 

tableaux for the spatial piece, it uses the Weyl tableaux for the spin piece, just like the 

UGA.  Figure 52 [41] combines the information from Figure 8 and Figure 49. Recall that 

in the UGA, although a spin state could be identified by the Young frame, the specific 

path taken to that state was ambiguous.  In the SGA, that ambiguity is resolved.  

Surprisingly, it is the Young tableau of the spatial state rather than the Weyl tableau of 

the spin state that specifies this path.  As an example, consider the triplet whose irrep is 

represented by the frame 

   

   

 

and thus whose conjugate spatial frame is 
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Figure 52. Genealogical construction of spin functions labled by multiplicities and 
Young frames 

 
 
 

  

  

  

 
From Figure 52 it is clear that this spin state will a be triply degenerate triplet.  While the 

spin state’s Weyl tableau determines the z-projection sm , the spatial state’s Young 

tableau determines which triplet is involved.  The three Young tableaux,  

1 2  1 3  1 4 

3   2   2  

4   4   3  

electrons 

1 2 3 4 5 

spin 

0 

1/

2 

1 

3/2 

2 

5/

2 

1 

4 

5 

1 

3 

1 

1 

2 

1 2 

1 
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each specify a genealogical path.  Take the first tableau, for example.  1 is in the first 

column, so we add it to the total spin.  2 appears in the second column, so we subtract 

it.  3 and 4 are both found in the first column, so we add both their spins.  The resultant 

path of add, subtract, add, add is shown in Figure 53 [41]. Using spin coupling 

techniques, we recognize that this coupling path, doublet, singlet, doublet, triplet, is the 

triplet of spin functions 

 

 

 

 

1
2

1
2

1
2

 

   

 

 


  




 (495) 

The second tableau then represents a doublet, triplet, doublet, triplet path outlined in 

Figure 54 [41].  This is the triplet 

 

 

   

 

2 1
3 6

1 1
3 12

1 2
6 3

  

     

  

  



    


 

 (496) 

Finally, the third Young tableau represents the doublet, triplet, quartet, triplet coupling 

in Figure 55 [41] which corresponds to the triplet 

 

 

 

   

3 1
4 12

1
6

31
12 4

   

     

   

   



    


  

 (497) 

Although all three triplets are clearly different sets of functions, the spin-orbit 

Hamiltonian does not distinguish between them; in fact, any set of them could be mixed 
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and retain a definite spin, and any with the same sm  mixed would also retain a definite 

z-projection.  For this reason, it is not necessary to specify exactly which genealogical 

path was taken to get to the spin state, and thus why the UGA does not suffer despite 

this disadvantage. 

 

 

Figure 53. Spin state represented by the first Young Tableau 
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Figure 54. Spin state represented by the second Young Tableau 

 

Figure 55. Spin state represented by the third Young Tableau 
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