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AFIT/GAP/ENP/05-01 

 

Abstract 

 
 Generally chemical calculations are made simpler by invoking the Born-

Oppenheimer Approximation, in which the dynamics of electrons and nuclei are 

considered separable; this class of chemistry is known as adiabatic chemistry.  However, 

in some situations this approximation fails to effectively describe a chemical system; this 

class of chemistry is known as non-adiabatic chemistry.   Examples of non-adiabatic 

chemistry include open-shell reactions with atomic oxygen, O+N2, such as might happen 

in the upper atmosphere.  The B+H2 system, the focus of this thesis, is also one for which 

non-adiabatic effects are important, and was initially studied for its possible use as a High 

Energy Density Material (HEDM). 

 The Hamiltonian operator that describes chemical systems can be split into the 

sum of kinetic and potential energy operators. In order for the Hamiltonian operator to be 

useful for creating solvable differential equations for the dynamics of a system, the 

kinetic energy operator must be diagonal.  In the adiabatic representation, the potential 

energy operator is diagonal, but the kinetic energy operator is not.  Chemistry in this 

representation is only useful when application of the Born-Oppenheimer Approximation 

allows the assumption that the off-diagonal terms of the kinetic energy operator are 

negligible.  This assumption fails when the off-diagonal terms of the kinetic energy 

operator, known as non-adiabatic derivative coupling terms (NAD terms) become 
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significant and cannot be neglected.  This occurs when the potential energy surfaces of a 

system come close, touch, or even cross.  In order to form useable dynamic equations 

with the Hamiltonian under these circumstances, it must be represented in a new basis in 

which the kinetic energy operator is diagonalized.  Diagonalization of the kinetic energy 

operator causes the potential energy operator to become undiagonalized; this form of the 

Hamiltonian is called the non-adiabatic representation.  The coupling angle by which the 

adiabatic representation is rotated into the diabatic representation is given by a line 

integral from an arbitrary zero to the configuration in question through the NAD terms.  

Non-adiabatic chemistry requires a quantum chemistry software package that calculates 

NAD terms.  Computational results from two packages, Columbus and Brooklyn, are 

compared and discussed. 

 Separation of internal dynamics characterized by Jacobi coordinates, and external 

dynamics characterized by a set of Euler angles and the center of mass position, requires a 

transformation from Cartesian coordinates, employed by both Columbus and Brooklyn, to 

Jacobi coordinates required for subsequent dynamical calculations.  Previous attempts to 

solve for non-adiabatic energy surfaces in this manner have failed because of an 

ambiguity in selecting the correct variable for describing the overall rotation of the B+H2 

system, giving answers that do not agree with specific test cases for which the coupling 

angle is known via simple symmetry arguments.  This error, which lies within the method 

of converting NAD terms from one coordinate system to another, is discovered and 

corrected.  By way of this correction, correct coupling angles are determined, and non-

adiabatic energy surfaces are calculated. 
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NON-ADIABATIC ENERGY SURFACES OF THE B+H2 SYSTEM 

 
 
 

I.  Introduction 

Non-Adiabatic Chemistry 

The study of quantum chemistry often takes advantage of a number of 

approximations, among them the Born-Oppenheimer Approximation.  The Born-

Oppenheimer Approximation assumes that the difference in mass of nuclei and electrons 

(the smallest ratio is about 1800:1 for a hydrogen nucleus) causes them to have vastly 

different timescales, such that the dynamics, and thus the Hamiltonians, of the two groups 

can be separated.  Solution of the electronic Schrödinger wave equation leads to a set of 

eigenvalues and eigenfunctions, where the eigenvalues serve as potential energy surfaces 

in the nuclear Hamiltonian.  The nuclear Hamiltonian then takes the form of a diagonal 

potential energy operator and a kinetic energy operator with off-diagonal terms. This form 

of the Hamiltonian is known as the adiabatic representation.  A kinetic energy operator 

with off-diagonal elements does not allow for solvable differential equations for the 

dynamics of the system.  Fortunately these off diagonal elements include derivatives of 

the electronic wave functions with respect to the nuclear coordinates (called derivative 

coupling terms, or NAD terms). Because the Born-Oppenheimer Approximation assumes 

different electronic and nuclear timescales these derivatives can be approximated to zero, 
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and both operators can be considered diagonal in this representation.  This branch of 

quantum chemistry is called adiabatic chemistry. 

For some systems the dynamics of the electrons and nuclei are not so cleanly 

separable.  We may still use the Born-Oppenheimer Approximation to separate the 

nuclear and electronic Hamiltonians; nevertheless, the derivative coupling terms are not 

insignificant, and thus the Born-Oppenheimer Approximation cannot be used to assume a 

diagonal kinetic energy operator.  Since a diagonalized kinetic energy operator is 

necessary for creating solvable differential equations, additional steps must be taken to 

manipulate the Hamiltonian into a usable form.  This new manipulated representation of 

the Hamiltonian that diagonalizes the kinetic energy operator (but undiagonlizes the 

potential energy operator) is called the non-adiabatic representation, and consequently 

this branch of quantum chemistry is known as non-adiabatic (or diabatic) chemistry.   

The Scattering Matrix 

 In non-adiabatic chemistry, diagonalization of the kinetic energy operator leads to 

a new, undiagonalized potential energy operator and new associated potential energy 

surfaces. The goal of this thesis is to calculate those potential energy surfaces; however, 

this is not the complete picture.  These surfaces are only a tool with which to construct 

the scattering matrix which describes the dynamics of the system. When constructed, the 

scattering matrix predicts probabilities of reactions occurring at the molecular level, and 

thus can be utilized to predict how chemical reactions will proceed.  An overview of the 

construction of the scattering matrix appears in Appendix A. 



 3 

Relevance to Air Force 

The heavy dependence of the Air Force on chemical studies for materials, fuels, 

meteorology, etc. makes the study and exploration of non-adiabatic chemistry a necessary 

step in present and future research.  For example, open-shell collisions such as N+O2 or 

O+N2 that affect the composition of the upper atmosphere may not be adequately 

described by approximating the derivative coupling terms to zero in the adiabatic 

representation, and consequently must be studied in the non-adiabatic representation. 

The focus of this study is another system of interest, Boron-doped cryogenic 

hydrogen (B+H2), which has an application as a rocket fuel (Yarkony, 1999:i-2).  The 

lowest energy surface (ground state) of the system has a potential well, meaning the 

system can assume a specific configuration and will not be able to change without outside 

energy.  This well corresponds to the configuration in which the boron atom is close to 

the center-line of the hydrogen molecule, but does not break the H-H bond.  At cryogenic 

temperatures the system can assume this configuration, storing energy for later extraction 

when the fuel is burned.  This well and the associated stored energy allow B+H2 to be 

classified as a High Energy Density Material (HEDM).  B+H2 also has another low-

energy surface, close to but higher than that ground state, which is anti-bonding (meaning 

there is no potential well). Using the Born-Oppenheimer Approximation to neglect the 

NAD terms, the adiabatic calculation of these surfaces assumes that the bonding surface 

and the anti-bonding surface are not associated; that is, that a system in the potential well 

of the bonding surface will not couple to the higher anti-bonding surface.  However, if 

there was significant coupling between the surfaces, the B+H2 molecule could possibly 
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leave the well and dissociate, shedding its stored energy prematurely, rendering it 

ineffective as a high energy density fuel.  The degree to which this non-coupling 

assumption is true is not easily extracted from the Hamiltonian in the adiabatic form.  

Rather, that information lies in the coupling surface—the collection of off-diagonal 

elements of the non-adiabatic potential energy operator.  Hence, in the case of B+H2, one 

must construct the non-adiabatic representation of the Hamiltonian in order to evaluate 

the probability of coupling, and thus suitability as a high energy density fuel. 

Recent Work and Problems 

 Dr. David R. Yarkony, Johns-Hopkins University, has calculated the adiabatic 

surfaces for the B+H2 system as well as the derivative coupling terms through his own 

software package called Brooklyn.  Brooklyn is a Graphical Unitary Group Approach- 

(GUGA) based software package that calculates energy levels and molecular wave 

functions on the Multireference Configuration Interaction (MR-CI) level of theory.  At 

the time of publication Brooklyn was not available for public use; an alternative code, 

Columbus developed in Columbus, Ohio originally by I. Shavitt et al. was available for 

public use, although certain portions of the software suite are still under development 

(Lischka, undated-a).  Since these software packages handle the creation of molecular 

wave functions and adiabatic energy surfaces, they can be seen as a black box; it is not 

necessary that the reader understand the underlying theory.  Nevertheless, a brief 

overview of methods to solve the many-body problem is covered in Appendix B.   

Since Brooklyn and Columbus are designed to handle a wide variety of molecules 

their inputs and outputs for nuclear positions are in terms of Cartesian coordinates.  For 
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most systems including B+H2 we would prefer to develop a coordinate system that allows 

for the separation of internal and external dynamics (and thus internal and external 

Hamiltonians). In the case of the three-body system the internal coordinates are the Jacobi 

coordinates, where r gives the bond distance of H2, � gives the tumbling angle of boron 

with respect to the hydrogen molecule, and R gives the distance between boron and the 

 

Figure 1. Jacobi Coordinates 

 
center of mass of the hydrogen (see Figure 1). The angle � can be measured either as the 

angle shown in Figure 1 or its supplement; for consistency we will always call the lesser 

of the two angles �.  Because the two hydrogen atoms are indistinguishable it is not 

necessary to examine the entire cycle of � from 0 to 2�.  Throughout the calculations we 

will only evaluate � from 0 to �/2 because the wave function will be symmetrical in all 

four quadrants.  Another advantage of using Jacobi coordinates is that we can compare 

the results of these software packages with the work of Dr. Millard Alexander, who 

calculated some non-adiabatic potential energy surfaces of B+H2 in Jacobi coordinates for 

r=1.402, the equilibrium bond length of the H2 molecule (Alexander, 1993:6019).   

B 
H2 

R 

r � 
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Dr. David Weeks took upon himself the job of transforming Dr. Yarkony’s NAD 

terms from Brooklyn into their Jacobi counterparts.  These results did not match those of 

Dr. Alexander. Finding the correction has been the thrust of this thesis, since we cannot 

construct the proper non-adiabatic potential energy surfaces without knowing the correct 

NAD terms.  To find and correct the error, this study was split into two explorations 

before being able to confidently construct the non-adiabatic potential energy surfaces: 

first, determining if the NAD terms produced by Brooklyn were correct by attempting to 

reproduce them with Columbus; and second, determining if the method of converting 

Cartesian NAD terms to their Jacobi counterparts was flawed.  The final result is that the 

Brooklyn NAD terms were correct and it was the conversion process that contained the 

error. 
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II. Theory 
 

 The Hamiltonian 

As stated in the introduction, the goal of this study is to find the non-adiabatic 

potential energy surfaces, specifically for B+H2.  Energy surfaces are no more than a 

collection of energy eigenvalues each of which is specific to a particular atomic 

configuration. To find energy eigenvalues we begin at the time independent Schrödinger 

equation (TISE) (Liboff, 1998:72): 

( ) 0=Ψ⋅− EH
�

.             (1) 

The form expressed in equation (1) is the most basic and abstract way to view the action 

of the Hamiltonian operator.  To be of any use, we must consider it in some coordinate 

system and apply it to a molecule, at least generally.  The Hamiltonian operator for 

polyatomic molecules in the coordinate representation is written as: 

�����
−

+
−

+
−

−∇−∇−≡
βα βα

βα

α α

α

α α ,,,

22 1
2
11

2
1

RR

ZZ

rrRr
Z

M
H

ji jii ii
rRT

�
 (2) 

where i and j index electrons, � and � index the nuclei, r is the electronic coordinates and 

R is the nuclear coordinates (Szabo 1996:41).  Unless otherwise noted we are using 

atomic units (au). The terms are: 



 8 

� ∇−
α α

21
2
1

RM
 

�∇−
i
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2

2
1

 

� −
−

α α

α

,i i Rr
Z  

� −ji ji rr,
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� −βα βα

βα

, RR

ZZ
 

Nuclear Kinetic Energy  

 

Electron Kinetic Energy 

 

Nucleus-Electron Interaction 

 

Electron-Electron Interaction 

 

Nucleus-Nucleus Interaction. 

The Born-Oppenheimer Approximation  

The Born-Oppenheimer approximation assumes that the nuclei move far slower 

than the electrons (Bransden, 1984:386-88).  Thus to the electrons, the nuclei can be seen 

as standing still, creating a constant (time-independent) potential field.  To the nuclei the 

electrons move so fast that their average can be seen as a constant potential field.  For 

electron dynamics this approximation allows us to assume that the first term of the 

Hamiltonian (nuclear kinetic energy) is equal to zero, and the last term (potential due to 

internuclear Coulombic forces) is equal to a constant. The effect of adding a constant to 

the Hamiltonian is only to add a constant to the eigenvalues; since we can arbitrarily 

choose the zero of a potential field we can neglect this constant term.  The remaining 

terms form the electronic Hamiltonian: 

���
−

+
−

−∇−≡
ji jii ii

re
rrRr

Z
H

,,

2 1
2
1ˆ

α α

α ,    (3) 



 9 

which has a complete set of orthogonal electronic eigenfunctions, �i(R; r).  Note that, 

although the nuclear terms are left out of the Hamiltonian, the nuclear configuration is not 

to be ignored.  The functions �i(R; r) depend parametrically upon the nuclear coordinates 

(R) as much as they depend functionally on the electronic coordinates (r).  For simplicity 

I will use abstract notation until necessary to operate in the coordinate representation. 

The eigenfunctions, �i, of the electronic Hamiltonian form a complete and 

orthogonal set, so that any function, specifically the wave function, 	, from equation (1) 

can be written as a superposition electronic wave functions: 

�=Ψ
i

iiF ϕ         (4) 

where the value of the qth component, Fq , can be found by: 

qqiiiq
i

iq FFF ===Ψ � ,δϕϕϕ ,           (5) 

where the orthogonally of the electronic states �i has been used.  Since the total 

Hamiltonian is a product of the nuclear and electronic Hamiltonians (under the Born-

Oppenheimer Approximation), the eigenfunctions of the full Hamiltonian can be written 

as a product of eigenfunctions of those Hamiltonians. Thus if Ψ  from equation (4) is an 

eigenfunction of the total Hamiltonian and iϕ  are the eigenfunctions of the electronic 

Hamiltonian, it follows that the Fi’s are the eigenfunctions of the nuclear Hamiltonian, 

and as such are functions of the nuclear coordinates (this will be key to the approximation 

shortly).   
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Since for the electronic Hamiltonian 

qqiiii
i

qie
i

q EEEH ===�� ,δϕϕϕϕ
�

,          (6) 

it follows that for the total Hamiltonian, 

NeT HHH ˆˆˆ +≡ ,        (7) 

 (where NĤ  is the nuclear Hamiltonian) we have the following derivation. We start by 

integrating the TISE in equation (1) with respect to electronic coordinates: 

Ψ=Ψ EH qTq ϕϕ
�

.        (8) 

We then substitute for the total Hamiltonian with equation (7) and substitute for 	 with 

equation (4), 

ii
i

qiiNe
i

q FEFHH ϕϕϕϕ �� =+
��

                  (9) 

which can then be split: 

��� =+
i

iiqiiN
i

qiie
i

q FEFHFH ϕϕϕϕϕϕ
��

.                    (10) 

And, taking advantage of (6) we have  

qiiN
i

qqq EFFHFE =+� ϕϕ
�

                (11) 

or 

( ) 0=⋅−+� qqiiN
i

q FEEFH ϕϕ
�

.                 (12) 

We do not yet know how to evaluate the term iiN
i

q FH ϕϕ
�

� .  In order to evaluate it we 

must consider it in the coordinate representation.  Recall that  
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� ∇−≡
α α

21
2
1ˆ

RN
M

H ;             (13) 

thus, when operating on the full molecular wave function 	, 

( ) ( )

( )( ) ( ) ( )( ) ( )( ) ( ) ( )( ){ }rRRFrRRFrRRF
M

rRRFHHr

iRiiRiRiiR
i

i
iNN

;;2;
1

2
1

;

22

,

ϕϕϕ

ϕ

α α

∇⋅+∇⋅∇+⋅∇

=⋅=Ψ

�

�
��

    

(14) 

where we have merely used the product rule for derivatives.  Notice the pair of terms 

( )( ) ( )rRRF iiR ;2 ϕ⋅∇  and ( )( )rRiR ;ϕ∇ . These terms take derivatives of the electronic wave 

functions with respect to nuclear coordinates. These terms, when integrated with respect 

to electronic coordinates become the derivative coupling terms set forth in the 

introduction. The Born-Oppenheimer Approximation allows us to assume that derivatives 

of the electronic wave function with respect to the nuclear coordinates are negligible; that 

is, ���q and ��2
�q are zero, so 

( ) ( ) ( )( ) ( ){ }rRRF
M

rRRFHHr iiR
i

iNN ;
1

2
1

; 2

,

ϕϕ
α α

⋅∇=⋅=Ψ ��
��

.          (15) 

This leads to another uncoupled TISE.  If we now substitute the result of (15) into (12) 

we get: 

( ) 0
1

2
1 2 =⋅−+∇� qqqR FEEF

Mα α

              (16) 

or, rearranging the terms into an eigenvalue equation, 

( ) ( )REFRFE
M qqqR =⋅��

�

�
��
�

�
+∇� 21

2
1

α α

.              (17) 
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Equation (17) is the nuclear TISE, with Fq(R) as its eigenfunctions.  Eq(R), the 

eigenvalues for the electronic wave equation, now become the effective potential for the 

nuclear wave equation. The Hamiltonian is broken into two operators, kinetic and 

potential energy, which can be represented as matrices operating on the nuclear wave 

function.  Since the TISE is an eigenvalue equation, we can refer to the nuclear wave 

functions as its eigenvectors or eigenfunctions. 

Using the Born-Oppenheimer approximation, forming matrix operators out of the 

Hamiltonian is simple.  Before we do, however, we must discuss truncation of the energy 

surfaces.   

Basis and Symmetry 

For the B+H2 system, there are an infinite number of molecular orbitals, each of 

which has an associated energy surface, that could be taken into account (Szabo, 1996:55-

57).  These molecular orbitals serve as basis vectors for forming the nuclear wave 

functions.  It is of course impossible to build the infinite matrix associated with such a 

basis.  Even a small number of these surfaces will begin to present numerical difficulties 

(Szabo, 1996:58).  In order to keep calculations to a minimum but still arrive at 

worthwhile results, we will only consider the molecule in its electronic ground state.  At 

the very low temperatures at which this system is of interest as a cryogenic fuel, these are 

the only energy levels of interest.   

A peculiarity of this molecule is that the valence electron of boron has three 

choices of atomic orbital for its ground state owing to the three-fold degeneracy of the p- 

orbital (Alexander, 1996:6015).  At the asymptotic limit, when boron is very far from 
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hydrogen, the eigenvalues of these three choices of orbital are degenerate; but as H2 and 

B come together the energy surfaces associated with these three ground states begin to 

separate, but are still closer together than higher states.  For this reason we will only 

consider the three energy surfaces that arise from the system’s occupying each of three 

molecular orbitals, each of which is composed primarily of only one of boron’s atomic p- 

orbitals for our energy levels of interest.  Thus all the nuclear wave functions we consider 

will be linear combinations of these three molecular orbitals.  

Special note should be taken that since B+H2 has only three atoms, it can always 

be placed in a plane.  Thus, except for the linear and perpendicular configurations, the 

system has the highest symmetry of CS, meaning the only non-identity symmetry it has is 

reflection through the plane of the molecule (Bishop, 1993:37).  The molecular orbitals 

can thus be symmetric across the plane, which are given a symmetry label A’ or 

antisymmetric, which are given a symmetry label A’’.  Figure 2 shows an example of 

symmetric and antisymmetric orbitals with respect to the x-y plane.   As it turns out the 

three ground states for the system include one wave function of A’’ symmetry labeled  

 

 

 

 

 

 

Figure 2. Symmetric vs. antisymmetric p-orbitals when reflected through the x-y plane 

symmetric 

x 

y 

antisymmetric 

x 

y 
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1A’’, and two of A’ symmetry labeled 1A’ and 2A’ (Alexander, 1993:6018).  Each 

molecular orbital has an associated potential energy surface which carries the same label. 

If we consider three possible molecular orbitals then equation (17) in matrix form 

becomes: 

�
�
�
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(18) 
(Weeks, 2004). 

Note that the number of molecular orbitals we wish to consider determines the 

dimensions of the operator matrix.  Hence we can think of doing algebra in a three-space, 

where the three molecular orbitals serve as basis vectors.  Since the potential matrix has 

no off-diagonal elements, this is the adiabatic representation.  This condition assures that 

a nuclear wave function on one potential energy surface does not interfere with the 

function on another. Since the Born-Oppenheimer Approximation allows that the off-

diagonal elements of the kinetic energy operator be assumed negligible, it is diagonal as 

well and we can extract solvable equations from this eigenvalue equation where nuclear 

dynamics on each of the 1A’, 2A’, and 1A’’ surfaces is uncoupled. 

Refining the Approximation 

We will now consider the situations in which the Born-Oppenheimer 

Approximation cannot be used to go from equation (14) to equation (15).  That is, the 

derivatives of the electronic wave functions with respect to the nuclear positions or NAD 
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terms are significantly greater than zero, and must be included.  Recall that these terms 

are the off-diagonal terms of the kinetic energy matrix in equation (18).  When these 

terms are included, the potential energy matrix remains diagonalized, but the kinetic 

energy matrix is not.  The result, from equation (14), is  
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.(19) 

Upon inspection it can be seen that this is the same as equation (18), but to the kinetic 

energy operator has been added a 3x3 matrix of derivative coupling operators.  To further 

simplify this representation, we recognize that  

( ) ( ) ( )rRrRdrRP jRiij ;;* ϕϕ ∇⋅≡ �     (20) 

 is just a constant dotted into the del operator and  

( ) ( ) ( )rRrRdrRQ jRiij ;; 2* ϕϕ ∇⋅≡ �     (21) 
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 is also a constant. Note that the differential operator is with respect to nuclear 

coordinates but the integral is with respect to electronic coordinates. These are the 

derivative coupling terms. Hence we can write the Hamiltonian as 
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Ordinarily the 13, 23, 31, and 32 elements of the second matrix would be non-zero as 

well; however, the 1A’ and 2A’ molecular orbitals, which are primarily composed of the 

atomic p-orbitals of boron that are coplanar with the system tend to mix with each other, 

but not with the 1A’’ molecular orbital, which is composed primarily of the atomic p-

orbital orthogonal to the plane.  Thus we save CPU time by recognizing that those 

elements, which represent mixing of the third with either of the first two, are nearly zero 

(Alexander, 1993:6019). 

The Diabatic Transformation 

If we were satisfied with the adiabatic representation we could stop here; 

unfortunately without employing the Born-Oppenheimer Approximation this 
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representation does not provide a set of differential equations which are solvable.  If, 

however, the kinetic energy matrices are considered in a different basis in which they are 

diagonalized we will form three new diabatic potential energy surfaces and a set of 

diabatic equations that are tractable.   

In order to understand how to diagonalize the kinetic energy operator, consider 

that the three molecular orbitals 1A’, 1A’’, and 2A’ are the basis vectors of a wave 

function three-space.  Consider a nuclear wave function, F, to be a vector in this three-

space, as depicted in Figure 3. One could imagine splitting this vector into three 

components, one along each of the axes.  This depiction corresponds to constructing the 

wave function from a linear combination of these molecular orbitals, or finding parts of  

 

Figure 3. A Nuclear Wave Vector Represented in Wave Function Three-Space 

the total wave function on all three potential energy surfaces.  A linear operator, Ô, that 

acts on F will act on the components of F individually, as one might expect simple in 

1A’ 

2A’ 

F 

1A’’ 
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linear algebra. If Ô is diagonal, then the result of Ô(Fi) is also along component i (where i 

is 1A’, 1A’’, or 2A’).  If Ô is not diagonal, but there exist three eigenvectors of Ô which 

form an alternative basis for the three-space, then Ô is diagonalizable in that basis 

(Hoffman, 1971:185).  The diagonalization takes the form of pre- and post-multiplication 

by a rotation operator, T (created with knowledge of the inner products of the original 

basis vectors and the eigenvectors of Ô) such that   

1ˆˆ −= TOTOD        (23) 

where DÔ  is the representation of Ô in the new basis, and is diagonal.  The basis vectors 

of this new basis are the eigenvectors of Ô used to create the rotation operator.  They will 

be some mixture of the original basis vectors, as illustrated in Figure 4.  This mixing  

 

Figure 4. Rotation of Potential Energy Surface Basis 

depicts the change from molecular orbitals and potential energy surfaces in the adiabatic 

representation to molecular orbitals and potential energy surfaces in the non-adiabatic 

representation.  The 1A’, 2A’ and 1A’’ vectors are eigenfunctions of the adiabatic 

 1A’ 

 

2A’ 

1A’’ 

1AD’’ 
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potential energy operator, and the 1AD’, 2AD’ and 1AD’’ vectors are the eigenfunctions of 

the diabatic kinetic energy operator. 

From equation (22) we know that our kinetic energy operator which we shall call 

K is not diagonal.  Creating the rotation operator matrix to diagonalize K would normally 

require three angles of rotation that mix the old molecular orbitals into new ones.  But 

since the 1A’’ orbital does not mix with the others, we need only worry about mixing the 

two A’ orbitals which requires only a single angle �(R) (Koppel 2002:7).  This rotation, 

applied the matrix-form Hamiltonian, will reduce the P(R) and Q(R) terms to zero.  The 

rotation matrix takes the form 

( )( ) ( )( )
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1'1' ; −− ≡≡ TUTUTKTK                (25) 

where U is the potential energy operator and the primed matrices are the kinetic and 

potential energy operators in the diabatic representation   In this representation, 
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and 
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'
11E , '

22E , and '
33E  are the diabatic (or non-adiabatic) potential energy surfaces upon 

which we can propagate the wave functions; and '
12E , though not a proper potential 

surface, is the coupling value between the first two surfaces.  [K’+U’]F=EF is now a 

solvable system of equations, and furthermore we have a measure of coupling between 

the potential energy surfaces. 

The task now turns to identifying �(R), which will depend on P(R) and Q(R).  As 

an approximation, let us assume that Q(R), which is a double derivative of electronic 

eigenfunctions with respect to nuclear coordinates, is negligible compared to P(R) which 

is only a single derivative of the same.  Recall from equation (20) that Pij has the form 

( ) ( ) ( )rRrRdrRP jRiij ;;* ϕϕ ∇⋅≡ �       (20) 

or, abstractly, 

jRiijP ϕϕ ∇≡ .        (28) 

In what Horst Koppel calls the “off-diagonal analogue of the Hellmann-Feynman 

theorem” we can manipulate the NAD term into a more useable formula (2002:5).  Let us 

start again with the TISE: 

jjj EH ϕϕ =ˆ .          (29) 

We then take the gradient with respect to the nuclear coordinates: 

( ) ( )jjj EH ϕϕ ∇=∇ ˆ         (30) 
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which by the product rule becomes 

jjjjjj EEHH ϕϕϕϕ ∇+∇=∇+∇ ˆˆ .      (31) 

Now integrate this equation over electronic coordinates: 

jjijjijiji EEHH ϕϕϕϕϕϕϕϕ ∇+∇=∇+∇ ˆˆ .       (32) 

Both energy terms on the right-hand side of the equation are constants and can be 

removed from the integration, while the Hamiltonian in the second term on the left-hand 

side of equation (32) can act on the bra rather than the ket: 

jijjijjiiji EEEH ϕϕϕϕϕϕϕϕ ∇+∇=∇+∇ ˆ .     (33) 

We now have an equation which has the NAD term in it.  Elimination of the first term on 

the right-hand side by orthogonality and simple algebraic manipulation reveal a new 

formula for the NAD term: 

ij

ji

jiij EE

H
P

−

∇
=∇≡

ϕϕ
ϕϕ

ˆ
.             (34) 

For an overview of how Columbus calculates Pij, see Appendix C.  This form of the 

derivative coupling term brings to light one situation where the Born-Oppenheimer 

approximation cannot be applied to the adiabatic representation.  In the denominator of 

the term is the difference between the two energy surfaces i and j.  As they become close, 

the derivative coupling term becomes large and cannot be neglected.  Moreover, at the 

point where the surfaces cross the term becomes a singularity, creating havoc with 

adiabatic predictions. 

Advantage may be taken upon examining the symmetry of the electronic wave 

functions in the NAD term.  Since ∇ is a symmetric operator, if one of the wave functions 
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integrated in Pij is symmetric but the other is antisymmetric, the entire integral is 

antisymmetric over all space, and is zero.  This is why no coupling is possible (at this 

level of theory) between the A’ and A’’ states, and thus why when we consider the 

derivative coupling terms, we shall only consider the terms that couple 1A’ and 2A’. 

The new P’ij of the diabatic representation will be related to the adiabatic Pij by a 

gauge transformation (Koppel, 2002:7): 

( ) ( ) ( )( )RRPRP ijij Θ∇+=' .        (35) 

We want to set this to zero, so  

( )( ) ( ) ( )RPRPR jiij =−=Θ∇  .             (36) 

Solving for �(R) simply requires integration of this equation: 

( ) ( ) ( )0
0

'' RRPdRR
R

ij Θ+⋅−=Θ � ,        (37) 

where �(R0) represents an arbitrary point at which to begin the line integral.  
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III. Calculation, Results and Discussion 

Columbus and Brooklyn 

 The software suite of choice for this venture was Columbus.  Though operation 

required a delicate touch, input scripts were cryptic, and documentation was scarce, in the 

end Columbus was the only package available to the public that could compute derivative 

coupling terms necessary for a diabatic transformation.  When computing energy 

eigenvalues and derivative coupling terms, Columbus implements multireference 

configuration-interaction (MR-CI) (Lischka, 2004).  In addition to Columbus, it should be 

noted that we also used results from Brooklyn, proprietary code of Dr. Yarkony. Since Dr. 

Yarkony has aided in writing Columbus it is safe to assume that the functions that the two 

packages have in common are very similar.   

Columbus itself is not a single program, but a suite of different programs 

communicating via files.  This modular nature allows the user to utilize some parts of 

Columbus without having to bother with others.  In order to get derivative coupling terms 

as we needed, Columbus must summon up a dozen or more individual programs to create 

bases, construct molecular wave functions, make distinct row tables, etc. Each one of 

these programs individually requires a number of input files which are not easily 

constructed by hand.  For this reason the maintainers of Columbus have created a script 

file COLINP.X which guides the user through choices of input and intended output and 

creates the necessary files.  Like the rest of Columbus, COLINP.X is a work in progress 

and still requires some manual tweaking of the files after they are created.  It also creates 

a file input for RUNC.X, another script file that will call the necessary programs within 
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Columbus that are needed so the user does not have to load each program individually. 

More information about the operation and capabilities of Columbus can be found 

at the Columbus web site (Lischka, undated-b). 

Coordinates 

Because Columbus and Brooklyn work in Cartesian coordinates it was necessary 

to convert our Jacobi coordinates into Cartesians for entry into the software packages.  

Since each of the three atoms must have its position fixed in space, we must translate 

three Jacobi coordinates into nine Cartesian coordinates.  Obviously the molecule can be 

restricted to the z=0 plane, eliminating the need for three extraneous coordinates.  Within 

the x-y plane the three Jacobi coordinates specify how the atoms are oriented with respect 

to one another, but there is still no criterion for how the molecule should be oriented  

 

Figure 5. Translating Jacobi Coordinates into Cartesian Coordinates 
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within that plane.  At the request of Dr. Yarkony, a decision was made so that the least 

number of Cartesian coordinates, three, were needed to specify the geometry (Weeks, 

2004).  This necessitated the pinning of boron to the origin, pinning one hydrogen to the 

x-axis but allowing it to slide along it, and allowing the second hydrogen atom to be 

oriented freely in the plane (see Figure 5).  This restriction allowed the geometry to be 

specified with three Cartesian coordinates: xH1, xH2, and yH2.  Given Jacobi coordinates r, 

R, and �, the Cartesian coordinates can be calculated by 

( )γcos
4

2
2

1 Rr
r

RxH −+= ,     (38) 

( )
1

2

sin

H
H x

Rr
y

γ= ,       (39) 

and 

2
2

2
12 HHH yrxx −±=       (40) 

where the sign in equation (40) is equal to the sign of the dot product of the vector along r 

and the x axis. 

Calculating the Adiabatic Potential Energy Surfaces 

 There are three surfaces of interest corresponding to the three molecular orbitals 

1A’, 2A’ and 1A’’ as mentioned previously.  A slice of these three surfaces as calculated 

by Columbus is shown in Figure 6.  Notice that as R goes to infinity, that is as the boron 

atom and the hydrogen molecule become separated, the three energy surfaces tend to 

become degenerate.  The left side of the graph shows the large potential energy barrier to 

becoming BH2.  Figure 7 shows an expanded view of the flat region of the surfaces.   



 26 

-25.8

-25.75

-25.7

-25.65

-25.6

-25.55

-25.5
2 3 4 5 6 7 8 9 10

R (bohr)

E
ne

rg
y 

(a
u) 1A'

1A''

2A'

 

Figure 6. Energy Surface Slice for r=1.402, �= �/4 
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Figure 7. Bonding vs. Anti-bonding States 



 27 

Notice that the 1A’ state does indeed have a small well for bonding, whereas the 2A’ state 

is anti-bonding. 1A’’ is also bonding, but cannot be coupled to the others because of 

symmetry.  Both of these graphs show the slice of the energy surface taken at � = �/4.  

The deepest part of the well actually occurs at � = �/2.   

Let us also look at the surface as sliced through �.  Figure 8, Figure 9, and Figure 

10 all show slices of the energy surfaces at R=5.0 and r=1.402 bohr (equilibrium distance 

for hydrogen molecule) but calculated in different manners.  Figure 8 and Figure 9 both 

show the same slice of the energy surfaces as calculated by Columbus, but there is a 

difference in input.  Columbus builds molecular orbitals out of a linear combination of 

atomic orbitals.  In theory there are an infinite number of atomic orbitals available, but in 

practice we must choose a finite number to serve as a basis set for constructing the  
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Figure 8. Energy Surface Slice for R=5.0 r=1.402  
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Figure 9. Energy Surface Slice for R=5.0 r=1.402, Truncated Basis 

molecular orbitals (this is not to be confused with the basis of molecular orbitals which 

form a basis of the wave function three-space).  Figure 8 shows the potential energy 

surfaces as calculated with the triple zeta (PVTZ) basis set; in the case of B+H2 this set 

consists of 58 basis orbitals, 40 of A’ symmetry and 18 of A’’ symmetry.  Figure 9 shows 

the same potential energy surface slice as calculated with the double zeta (PVDZ) basis 

set; in the case of B+H2 this set consists of  24 basis orbitals, 18 of A’ symmetry and 6 of 

A’’ symmetry.  Notable differences include a difference in energy level and a kink in the 

PVDZ energy curves.  The PVTZ energy surfaces start below the PVDZ set by at about 

0.02 atomic units.  The variation principle states that the energy calculated using the true 

Hamiltonian is always an upper bound to the true energy, suggesting that the triple zeta 

calculations are more accurate.  Figure 10 shows data collected from Dr. Yarkony’s 
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calculations using 
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Figure 10. Energy Surface Slice for R=5.0 r=1.402, Brooklyn Code 

Brooklyn. As best we can tell by examining his input files he is using 83 atomic orbitals 

in his basis set.  This could suggest mixing PVTZ and PVDZ bases or some other basis 

set.  Despite the larger basis set, Dr. Yarkony’s energy surfaces seem to come short of 

Columbus’ PVTZ calculations by about 0.005 atomic units.  Although either of these 

calculations could be considered sufficient, it may suggest that the method Columbus uses 

to calculate adiabatic energy surfaces is more efficient or more in-depth than that of 

Brooklyn.  Figure 11 shows surface and contour plots of the three adiabatic potential 

energy surfaces of interest as calculated with Brooklyn for the equilibrium position of 

hydrogen, r=1.402,  for the range R=5 to 10 and �=0 to �.   
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Figure 11. Surface and Contour Plots of the 1A', 2A', and 1A'' Surfaces  

Calculating the Derivative Coupling Terms 

 Another function of Columbus or Brooklyn which is critical to calculating the 

non-adiabatic potential energy surfaces is calculation of the derivative coupling terms.  

When either program calculates wave functions, it only does so to within a phase factor 

(Weeks, 2004). When the electronic wave functions are integrated to get the NAD terms, 
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this phase factor is integrated out for diagonal terms: 

iiii
iii

i
i

iii
iiii eeeeP ϕϕϕϕϕϕ θθθθ ∇=∇=∇= − .        (41) 

But for off-diagonal terms where �i does not equal �j the phase factor does not disappear.  

Fortunately for real wave functions the phase factor is always real, so the phase factor just 

becomes an arbitrary 1 or -1 in front of every calculated NAD term.  Unfortunately there 

is no easy fix to this phase factor, but neither can it be ignored. The only way to correct 

for it is to view the NAD terms in sequence across the energy surface and invert terms 

that seem out of place. The two guiding facts for selecting those terms in need of 

inversion are that the NAD terms should vary slowly across all parts of the surface and 

that the phase factor is the same for all NAD terms at a given nuclear configuration. 

Figure 12 illustrates a series of NAD terms calculated by Columbus.  The label d/dn is 

shorthand for the derivative coupling term with respect to the coordinate n: ji n
ϕϕ

∂
∂

.  

The slice is the same as previously examined: R=5.0 and r=1.402 bohr.  Note that for �= 

4�/20, 5�/20, and 6�/20 the all of the terms take a sharp dive across the axis.  If it is 

assumed that these three points have been calculated with a -1 phase shift, we can correct 

them with a simple sign adjustment.  Figure 13 shows the same NAD terms with the 

phase correction made.  Columbus calculated the points marked, whereas the lines are 

interpolations on those points. We could have chosen the exact opposite situation and 

assumed that those three points were correct and all the others were flipped.  The result 

would be the same, only inverted about the axis.  The total phase factor is irrelevant so 

long as it is the same for all measurements. We cannot, however, choose to correct some  



 32 

-15

-10

-5

0

5

10

15

0 0.3927 0.7854 1.1781 1.5708

Gamma (rad)

E
ne

rg
y 

(a
u)

d/dxb

d/dyb

d/dxh1

d/dyh1

d/dxh2

d/dyh2

 

Figure 12. Cartesian NAD Terms from Columbus with Uncorrected Phase 
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Figure 13. Cartesian NAD terms from Columbus with Corrected Phase 
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of the NAD terms at a given nuclear configuration and not others.  For instance in Figure 

13 it would be tempting to correct the d/dxh1 and d/dyh1 terms alone at � = �/10. This is 

forbidden without flipping the other four terms as well, and by examining the d/dxb and 

d/dxh2 terms we can judge that inversion would not be prudent.  Figure 14 shows the 

NAD terms for the same slice of potential energy surface as calculated by Dr. Yarkony in  
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Figure 14. Cartesian NAD Terms from Brooklyn with Corrected Phase 

 

Brooklyn after a corrected phase factor has been applied.  Unlike for the potential energy 

surface calculations, the NAD term outputs from Columbus and Brooklyn are not close at 

all.  Not only do they have different shapes, but they differ by an order of magnitude.  

Unfortunately at this time we are unable to verify the NAD terms from Brooklyn by our 

own calculations in Columbus, which was to be the first exploration in finding the error 

in previous calculations.  The negative result from Columbus is probably a result of 
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running it with faulty input files.  However, correction of the error in the second 

exploration (the conversion of Cartesian to Jacobi derivative coupling terms) produced 

results that agreed with theory; thus the NAD terms from Brooklyn are demonstrably 

correct. 

The Jacobi Transformation 

Let us now examine the NAD terms in Jacobi coordinates.  With six Cartesian 

coordinates we are able to define any possible configuration of B+H2 within the plane.  

When creating inputs for Columbus and Brooklyn in Figure 5 we were able to restrict the 

placement of the system in the plane to minimize the number of Cartesian coordinates 

required to specify an internal geometry.  This restriction was acceptable for the purposes 

of simplifying inputs because the potential energy surfaces and NAD terms only depend 

on internal geometry; that is, they only depend on the relative positions of the atoms to 

each other, not where they are with respect to the origin.   

In order to convert from one coordinate system to another, we need to lift the 

restriction of how the system is oriented with respect to the origin. . The usual Jacobi 

coordinates are internal; they orient the atoms with respect to each other but specify no 

information whatsoever about where in the plane the system is found. We need to 

augment our three Jacobi coordinates with an overall displacement and an overall rotation 

We choose the center of mass of the system as the point to measure displacement, 

although any point that is fixed in the center of mass frame of reference will yield the 

same result.  At this point the choice of rotation angle reference, �, is  arbitrary inasmuch 

as it is independent of the other five Jacobi coordinates.  The choice of Dr. Yarkony is 
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Figure 15. The Six Jacobi Coordinates 

illustrated in Figure 15.  His � is an average of �1 and �2 (Weeks, 2004).  This 

arrangement also allows � to be alternatively defined as �2-�1. Thus the six Jacobi 

coordinates are: R, r, �, xcm, ycm, and �. These Jacobi coordinates are independent; that is, 

any one can be changed without forcing any of the others to change.  For the sake of 

being arbitrary, one could just as easily have chosen either �1 or �2 as the reference of 

rotation, as either one is also independent of the other five coordinates.  But as we will 

show, in order to separate the internal and external Hamiltonians, the choice of reference 

angle must be specifically � = �1; this was the cause of error in the coupling angles 

calculated from the Jacobi NAD terms.  The six Cartesian coordinates are: xB and yB, the 

position of boron; xH1 and yH1 the position of one of the hydrogens; and xH2 and yH2 the 

position of the other hydrogen. 
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 The output of Brooklyn or Columbus gives us the Cartesian NAD terms; but 

mixing them all to come up with Jacobi derivatives is a formidable task.  A Jacobi 

derivative coupling term is extracted from the Cartesian derivative coupling terms by: 
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where R can represent any of the Jacobi coordinates. Inspection of equation (42) reveals 

that this equality arises from the chain rule for partial derivatives.  Equation (43) reveals 

that this is equal to a product of Cartesian derivative coupling terms and derivatives of the 

Cartesian coordinates with respect to the Jacobi coordinate in question.  Given the vectors 
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the Jacobi coordinates in terms of the Cartesians are 
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It is very difficult if not impossible to analytically solve for the derivatives in equation 

(43) because the above transformation is not invertible.  Fortunately the reverse operation, 

getting the derivatives of the Jacobi coordinates with respect to the Cartesian coordinates 

is fairly straight forward.  The matrix that contains all the partial derivatives of one set of 

coordinates with respect to another set is called the Jacobian.  The Jacobian for the 

Cartesian-to-Jacobi operation looks like 
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This matrix dotted into a vector containing the Cartesian derivative coupling terms leads 

to six values that have the form of the right-hand-side of equation (43): 
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 The Jacobian for Jacobi-to-Cartesian conversion can be obtained by:
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(Weeks, 2004) 

where the ixR ∂∂ /  are known analytically from the R=R(xi) transformation in equations 

(46)-(51).  Careful consideration shows that the product of these matrices is indeed the 

identity matrix, which confirms that going from Cartesian to Jacobi to Cartesian or vice 

versa is an identity operation and should leave the coordinates unchanged.  It then 

becomes a simple matter of linear algebra to use this new Jacobian in conjunction with 

the Cartesian NAD terms to come up with the Jacobi NAD terms as per equation (43).  

Figure 16 shows the NAD terms from Figure 13 (those calculated by Columbus) after 

having been converted to Jacobi coordinates.  Notice how erratic the angular derivatives 

are (d/d� and d/d�).  Figure 17 shows the NAD terms from Figure 14 (those calculated by 

Brooklyn) after having been converted to Jacobi coordinates.  Note that all the NAD  
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Figure 16. Jacobi NAD Terms from Columbus 
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Figure 17. Jacobi NAD Terms from Brooklyn 
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terms change smoothly across the energy curve slice, especially the angular terms.  Note 

also the much smaller scale that the Brooklyn NAD terms take on.  Keep in mind that 

these Jacobi NAD terms were calculated with Dr. Yarkony’s � from Figure 15, so theyare 

not necessarily correct (specifically the d/d� term).  Initial calculation using these values 

led to the incorrect coupling angle as the next section will illustrate.  

Calculating the Coupling Angle 

The derivative coupling terms we have calculated are used to create the coupling 

angle �(R) in equation (37), which is then used to form the rotation matrix in equation 

(24).  This rotation matrix then diagonalizes the kinetic energy operator and mixes the 

potential energy surfaces in the potential energy operator, placing them in the diabatic 

representation.  Because the integral in equation (37) is path independent, we can choose 

to integrate from an arbitrary starting point through the derivative coupling terms to the 

point (R, r, �) in straight lines parallel to the axes (See Figure 18).  This line integral can  

 

Figure 18. Path Integral to Calculate �(R) in NAD-Term Space 
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be made even simpler by choosing to place the starting point for the integration in the 

plane � = �/2.  Notice in Figure 17 that the NAD terms with respect to r and R are nearly 

zero at � = �/2.  This is true for all values of R and r.  Thus the integral from �(R0) to A 

and A to B is negligible, and the entire integral is equal to the integral from B to �(R).  

This implies that �(R) need only be integrated along � (Weeks, 2004).  

In his work on the B+H2 system with hydrogen at its equilibrium distance, 

Alexander calculated that whether the energy eigenvalues of the electronic Hamiltonian 

were positive or negative would depend on how close the hydrogens came to either end of 

the antisymmetric boron atomic p-orbital (1993:6018).  Recall that these energy 

eigenvalues form the potential energy surfaces for the nuclear Hamiltonian.  If the  

 

Figure 19. How � Affects Electronic Eigenvalues 

� < �/2, positive energy � > �/2, negative energy 

� = �/2, zero energy � = 0, zero energy 
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hydrogen swings closer to the positive lobe there is a repulsion and hence a positive 

energy.  If it swings closer to the other lobe the opposite is true (see Figure 19).  Since the 

potential energy surfaces must be continuous, this implies that in the collinear 

configuration and in the “T” configuration all the surfaces must go through zero.  

Alexander also derived that the off-diagonal (coupling) potential energy surface would be 

related to the coupling angle by: 

( )( ) ( )( ) ( )2112 cossin EERRE −⋅ΘΘ= (1993:6020).                        (55) 

In order for the surface to go to zero, this implies that �(R) must go to 0 or �/2 at � = �/2 

and � = 0.  Because we put the arbitrary starting point of the integral at � = �/2, �(R, r, 

�/2) will always be equal to zero.  Figure 20 shows Alexander’s calculation of coupling 

angle as a function of Jacobi angle. For below values of about R = 6.5 the line integral 

goes back to zero and for values above it goes to �/2, as shown in Figure 20.  The � NAD  

 

Figure 20. Alexander's Calculation of the Coupling Angle (1993:6019) 
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term as calculated in Brooklyn for the R=5, r=1.402 slice of the energy surface is shown 

in Figure 21 (this is extracted from Figure 17).  For most of the slice the NAD term is 

negative, with only a small portion of the curve near zero being positive.  The result of  

 

Figure 21. � NAD Terms from Brooklyn 

 

Figure 22. Coupling Angle from Brooklyn NAD Terms 

the line integral across this slice is shown in Figure 22; the value approaches neither 0 nor 

�/2 (this plot is actually the absolute value of the line integral for the sake of comparing 

with Alexander’s data).  This disagreement with theory implies that either the derivative 
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coupling terms produced by Brooklyn are wrong or the method of transforming them to 

Jacobi coordinates is wrong. 

Origin Dependency 

 Recall that when we oriented the system in the plane with Jacobi coordinates, we 

specified the angle � = (�1+�2)/2, but there were several choices of angles that were 

independent of the other five Jacobi coordinates. Figure 23 shows the Jacobi NAD terms 

calculated with � = �1.  Compare this figure with Figure 17, which was calculated with � 

= (�1+�2)/2.  All the derivative coupling terms are exactly the same with the exception of 

the � term.  Even so the � term appears to have the same line shape, but the terms are 

offset by a common constant (0.5).  Clearly by choosing different but equally valid 
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Figure 23. Jacobi NAD Terms from Brooklyn, � = �1 
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coordinate systems we affect some of the derivative coupling terms.  This contingency on 

the choice of coordinates is known as an origin dependency.  

Origin dependency is best understood by the following example.  Consider a 

linear system of two masses as in Figure 24.  We can construct two separate coordinate  

 

Figure 24. Simple Linear System 

systems to describe their positions.  The Cartesian coordinate set describes the system as 

(x1, x2) where x1 is the distance of mass m1 from the origin and x2 is the distance of mass 

m2 from the origin.  The second system, which might be dubbed the center-of-mass 

coordinate set describes the system as (r, s) where r is the distance between the masses 

and s is the distance from the origin to some point relative to the positions of the two 

masses.  If s is chosen such that s = m1*x1+m2*x2 then s is the distance to the center of 

mass, but in general the center-of-mass set is related to the Cartesian set by:  
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21 xbxas ∗+∗= .              (57) 

If we express this relationship in matrix form, 
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we can easily invert it in order to find the Cartesian set in terms of the center-of-mass set: 
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From this we can extract the Jacobian: 
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Now suppose we have the derivative of some function, 	 with respect to the Cartesian 

coordinates, but we want its derivative with respect to the center-of-mass coordinates.  

We just dot the Jacobian into the derivatives (compare equation (43)): 
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The derivatives evaluate to 
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As long as the sum of a and b are the same, the derivative with respect to s, the external 

coordinate, remains the same; but the derivative with respect to r, the internal coordinate, 

varies as the ratio of a to b varies.   

This simple example helps to explain the relationship between the � and the � 

NAD terms.  The internal angular coordinate, �, was defined as �2-�1 whereas the external 

angular coordinate, �, was defined as a*�1+b*�2.  As long as a+b = 1 the � NAD terms 

remained the same, while the � NAD terms varied with the ratio of a to b.  This implies 

that the choice of a and b is not arbitrary when calculating the � NAD term. Part of the 

reason that � = (�1+�2)/2 was not discounted immediately upon finding the error in the 

coupling angle was that the value of the d/d� term, which is a measure of angular 

momentum, was compared to and found matching the angular momentum calculated 

using other methods and it was assumed that all other NAD terms must also be correct.   

The correct choice of a and b to extract the correct derivative coupling terms and 

consequently the correct coupling angle is buried in another form of the Hamiltonian 

which is generalized for use in three dimensions: 
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  (64) 

where the first term is the linear momentum of the boron with respect to the hydrogen, the 

second term is the vibrational motion of the hydrogen molecule, the third is the angular 

momentum of the hydrogen, the fourth is the angular momentum of the system, the fifth 

is the potential due to the electrons, and the sixth is a spin-orbit term (Niday, 1999:20).  

The third term in the Hamiltonian is associated with � and the fourth term is associated 
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with �.  Coming to this form of the Hamiltonian in which the internal and external 

angular momenta are separated required using the Euler angles as part of the coordinate 

system.  Since we are restricting our system to a plane we need not use all of the Euler 

angles; however, we still need one of them, �, to account for the system’s rotation in the 

plane.  The Euler angle � is the angle �1 from Figure 15.  Thus in order to successfully 

separate the Hamiltonian to arrive at the correct coupling angles, we must set a to 1 and b 

to 0; that is, � = �1.  Figure 25 shows the � NAD terms for R = 5, r = 1.402, and the 

resultant coupling angle after setting � to equal �1. In agreement with Millard Alexander’s  

 

 

Figure 25. � NAD Terms and Line Integral After Effecting Rotation 

data, the coupling angle now goes to zero at � = 0. Figure 26 shows the line integrals after 

rotation for a variety of lengths of R.  Table 1 compares their value at � = 0 to 0 or �/2. 

Since these coupling angles behave almost exactly as Alexander calculated, we can 

conclude that the derivative coupling terms given by Brooklyn are correct. 
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Figure 26. Coupling Angles After Rotation for Various R  
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Table 1. Line Integrals Expected vs. Actual Values 

R Expected (rad) Actual (rad) Difference (rad) 
3 0 0.028819 -0.02882 
4 0 0.006078 -0.00608 
5 0 0.012663 -0.01266 
6 0 0.04257 -0.04257 
7 1.570796327 1.588636 -0.01784 
8 1.570796327 1.619886 -0.04909 
9 1.570796327 1.595284 -0.02449 

10 1.570796327 1.587158 -0.01636 

 

Calculating the Non-Adiabatic Surfaces 

Having verified the coupling angles we may now proceed to construct the non-

adiabatic surfaces which we have sought.  The coupling angle, �(R) is used to construct 

the rotation matrix in equation (24).  The rotation matrix is then applied to both the 

kinetic and potential energy operators as in equation (25).  Rotation of the potential 

energy operator creates the diabatic potential energy operator: 
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The new diagonal terms are the diabatic energy surfaces, and only the 1A’’ surface which 

did not mix remains the same. The off-diagonal terms are the coupling surface.  Although 

not a proper surface, the coupling surface gives a measure of the likelihood that the 1A’ 

and 2A’ surfaces will couple; that is, that a wave function found on one will work its way 

onto the other.  
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Application of this method to the slices shown in Figure 11 results in the surfaces 

shown in Figure 27.  This figure includes only the 1A’ and 2A’ surfaces since the 1A’’ 

surface does not mix and is left as before in its adiabatic state.  Once again these are two- 
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Figure 27. Surface and Contour Plots of the 1A' and 2A' Diabatic Surfaces and the 
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dimensional slices of three-dimensional surfaces, the slice being taken at r = 1.402 bohr.  

The first column has the surface plots and the second column has overhead contour plots.  

The 1A’ and 2A’ surfaces are plotted on the range of R = 5 to 10 and � = 0 to �.  To this 

figure we have also added the feature we had been missing from the adiabatic picture: the 

coupling surface.  The coupling surface shows more coupling as R gets smaller and less 

as R gets larger.  It also shows that at � = �/2 there is no coupling.  This is significant 

because this is the region on the 1A’ surface where the potential well is deepest and the 

Van der Waals molecule, should it be formed, is most likely to be found. That implies 

that there is very little possibility of the molecule “leaking” out onto the antibonding 2A’ 

surface, which would seem to confirm that B+H2 is a good candidate for being a HEDM. 

However, should the hydrogen molecule rotate to the left or right with respect to the 

boron, the coupling becomes very large.   

 These surfaces can be compared to the surfaces that Alexander calculated and be 

found matching (1993; 6021-24).  This too is significant because it means that the NAD 

terms calculated in Brooklyn by Dr. Yarkony are correct.  Furthermore this verifies that 

the definition of � as the Euler angle � is correct and produces the correct coupling angle.  

This means that the balance of the surfaces for lengths of r different from the equilibrium 

distance can be mapped out with confidence using this method. 
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IV. Conclusion 
 
 Adiabatic chemistry has been the staple of quantum chemistry for several decades.  

The Born-Oppenheimer approximation has made problems tractable on computers.  

Nevertheless, as computers become more capable and we demand more accuracy in our 

calculations of molecular wave functions and energy surfaces, diabatic chemistry or at 

least adiabatic/diabatic hybrid chemistry is becoming increasingly important.  As it works 

its way into code and models we must be aware of the various problems associated with 

its implementation, like this origin dependency.  Extreme care must be taken when 

calculating the coupling between non-adiabatic energy surfaces so that this origin 

dependency or one similar to it does not creep its way into the results and papers of 

unaware researchers. 

 As for this project, we can conclude that the derivative coupling terms created by 

Brooklyn are indeed correct.  We have calculated a subset of the coupling angles and 

diabatic surfaces from these data and found them agreeing with the work of Millard 

Alexander.  Follow-on projects will now be able to use the data to complete the full three-

dimensional surfaces.  These surfaces can then be used to construct the scattering matrix 

and characterize whether B+H2 can be used as a high energy density fuel. 

 On the subject of Columbus it is unfortunate that we were not able to create our 

own derivative coupling terms similar to those created by Brooklyn.  Many man-hours 

were used to tweak Columbus’ switches and knobs and, although progress was made, the 

right inputs could not be found.  Hopefully with more contact and communication with 

the maintainers of Columbus future researchers in the Department of Physics in need of 



 54 

derivative coupling terms will be able to master the code and create them according to 

their needs. 
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Appendix A: The Scattering Matrix 

 The end of finding the non-adiabatic potential surfaces is making the scattering 

matrix.  Because the scattering operator exists in linear momentum space crossed with 

linear momentum space, its matrix representation is dense and infinitely large.  We can 

therefore only calculate a certain portion of the matrix around values we find most 

interesting.  Further, we can only calculate the matrix in discrete steps and must 

interpolate the other values if we should need them. 

 The scattering problem begins by specifying inΨ  and outΨ , the wave packets 

of the initial and final states, respectively (Niday, 1999:6).  These states must then be 

propagated to their asymptotic limits, reactants to −∞=t and products to ∞=t using the 

asymptotic Hamiltonian: 

in
teIntermedia

in

tHi
Ψ−=Ψ }

ˆ
exp{ 0

�
      (66) 

and 

out
teIntermedia

out

tHi
Ψ−=Ψ }

ˆ
exp{ 0

�
.      (67) 

These intermediate states are then taken from infinity and propagated toward interaction 

via the Hamiltonian created with the potential surfaces: 

teIntermedia
in

tHi Ψ−=Ψ+ }
ˆ

exp{
�

      (68) 

and 

teIntermedia
out

tHi Ψ−=Ψ− }
ˆ

exp{
�

.      (69) 



 56 

The scattering matrix element is a “bridge” between these two states, so in order to 

calculate it, we must calculate a correlation between the two states: 

( ) γγ
γγ +− Ψ⋅−Ψ= }

ˆ
exp{`

`
�

tHi
tC           (70) 

where the reactants and products have now been indexed by � and �` to differentiate 

specific beginning and ending states.  The scattering matrix operator element is then 

calculated as: 

( )
( ) ( ) ( )tC

iEt
dt

kk

kk
S kk γγ

γγγγ

γγγγ

ηηµµ
π

γγ `

`
*

`

``
, exp2

` �
∞+

∞−+−
±± ⋅

�
�
�

�
�
�

±⋅±

⋅
=

�

�

.             (71) 

where E is the total energy, k� is the relative momentum between reactants, k�` is the 

relative momentum between products, ( )γη k±±  are expansion coefficients used to 

construct the initial states, and 
� are the reduced masses. 
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Appendix B: The Many-Body Problem 

 Although we have traced the theory of non-adiabatic energy surfaces from 

beginning to end, we are unable to put it to use unless we actually calculate the electronic 

wave functions themselves. 

The student of quantum mechanics is well acquainted with the derivation of 

hydrogenic orbitals.  He has also been reminded time and time again by his professors 

that this two-body problem is the only one of its kind for which one can solve analytically 

the molecular wave functions.  Even the addition of a single electron puts calculation of 

molecular wave functions squarely in the hands of the computer.  In the B+H2 system we 

have 10 bodies including nuclei and electrons.  Fortuitously we are not without help—a 

number of methods to iteratively approximate molecular wave functions are available. 

Hartree-Fock  

 The most basic way to determine molecular wave functions, and the method upon 

which more complicated models are based, is the Hartree-Fock method (Szabo, 

1996:108-230).  This method solves the Hartree-Fock eigenvalue equation,  

( ) ( ) ( )ii
HF

i
i xxiv

r
Z εχχ

α α

α =⋅��
�

�
��
�

�
+−∇− �2

2
1

                  (72) 

where the vHF is the average potential experienced by the ith electron due to the other 

electrons.  The quantity in parentheses is known as the Fock operator.  By introducing 

this average interaction, the energy � is merely a sum of the individual orbital energies for 

each electron, and the wave function, �, is a product of the hydrogenic type orbital of 

each electron: 
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( ) ( ) ( ) ( )nnn xxxxxx χχχ ......, 221121 =Ψ        (73) 

where i represents a spin orbital and xi are the coordinates of a given electron.  A spin 

orbital is the product of an atomic orbital and a spin function, which can be either up 

(�(�)) or down (�(�)).  This form of the wave function is not yet complete; it does not 

necessarily conform to the antisymmetry principle.  This principle, which is born out of 

the Pauli Exclusion Principle, states that 

( ) ( ).................. ijji xxxx Ψ−=Ψ .            (74) 

In order that � obeys this principle, we introduce Slater Determinants, so that 

( )
( ) ( )
( ) ( )

��

�

2221

1211

21
!

1
..., xx

xx

n
xxx n χχ

χχ
=Ψ        (75) 

These Slater Determinants are often written in simplified form: 

( ) nnxxx χχχ ......, 2121 =Ψ          (76) 

where the normalization is implied.  Hartree-Fock uses a single Slater Determinant to 

determine the ground state energy.  The variation principle states that any energy we find 

by adding and subtracting atomic orbitals will be an upper bound for the true energy of 

the configuration; that is, the best approximation to the molecular wave function is the 

one with the lowest energy.  This can be done iteratively with the help of a software 

package.  An initial guess at the linear combination of atomic spin orbitals that gives the 

Slater Determinant will give the average field term in the Fock operator.  This Fock 

operator will have eigenfunctions which are Slater Determinants different from those 

initially guessed.  These new combinations can be used to find a new average-field term 
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again, and so on until the eigenfunctions are consistent with the Fock operator.  Because 

the object is to iteratively vary the Slater Determinants until the electric field calculated 

from them is consistent with the Fock operator whose eigenfunctions they are, this 

process is called self-consistent field, or SCF.  This method is an approximation—but the 

more atomic orbitals that are used the lower the energy will be and the better the 

approximation.   

Configuration Interaction (CI) and MCSCF 

 The Configuration Interaction (CI) method is a refinement beyond Hartree-Fock 

that is considered a deeper level of theory by using multiple Slater Determinants rather 

than just one as in Hartree-Fock (Szabo, 1996:231-270).  Given a complete set of spin 

orbitals, i(x1), one can construct any arbitrary function within the space: 

( ) ( )�=Φ
i

ii xax 11 χ          (77) 

It can be shown as well for two variables: 

( ) ( ) ( )2
,

1,21 , xxaxx j
ji

iji χχ�=Φ             (78) 

As before if this is a wave function we would like it to be antisymmetric, so we use a 

Slater Determinant instead: 

 ( ) �
<

=Φ
ji

jijiaxx χχ,21 ,                (79) 

And in general  

( ) �
<

=Φ
nji

njinijn axx
...

...21 ......, χχχχ          (80) 

Thus CI goes beyond Hartree-Fock by defining the wave function not only by the single 
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Slater Determinant giving the lowest energy, but as a linear combination of all possible 

Slater Determinants of n electrons.  This yields a lower and thus more accurate energy for 

the configuration by the variation principle.  If we define 0Φ  as the Hartree-Fock 

ground state Slater Determinant, we can express other Slater Determinants as excitations 

out of this one.  For instance, if ni χχχ ......10 =Φ  then we can 

create nj
j
i χχχ ......1=Φ , a singly excited determinant, by replacing the spin orbital i 

with j.  We can also create and name doubly, triply, quadruply, et c. excited determinants 

and define the wave function as: 

...
,

00 +Φ+Φ+Φ=Ψ ��
<< srba

rs
ababrs

ar

r
aar ccc       (81) 

Once again we are limited by the fact that we do not have an infinite number of atomic 

orbitals with which to construct molecular wave functions, nor can we sum several 

multiply-excited determinants before we get bogged down.  As in the Hartree-Fock 

method, a truncated basis of atomic orbitals must be chosen, and a limit on excited 

determinants must be chosen as well.  Many software packages limit the sum to doubly 

excited determinants.  Then the determinants as well as the coefficients are varied until a 

lowest upper bound is found for the energy.  This process of optimization is called 

multiconfiguration self-consistent field, or MCSCF. 
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Appendix C: Columbus’ Calculation of the Derivative Coupling Term 

Lischka et al. describe the method Columbus uses to calculate the NAD terms 

which, while more in depth, takes a similar form at least in part to the method used by 

Koppel (2004:7323).  From CI we know that the electronic wave functions are linear 

combinations of other functions.  In Appendix B they were referred to as various Slater 

Determinants.  In the text of Lischka et al. the term configuration state function (CSF) is 

used (2004:7322).  Thus the electronic wave functions take the form 

�=
n

n
i
ni c ψϕ       (82) 

where 	n is the CSF.  Substituting into the form of the NAD term we get: 

�
�

�
�
�

�∇=∇≡ �� m
m

j
mn

n

i
njiij ccP ψψϕϕ .          (83) 

Thus the NAD term can be further broken down: 

( ) m
m

j
mn

n

i
nm

m

j
mn

n

i
nij ccccP ψψψψ ∇+∇= ���� .            (84) 

Since the 	’s are orthonormal, the first term is just an inner product leaving only the 

coefficients so that  

( ) ji
m

m

j
mn

n

i
n cccc ∇=∇�� ψψ .                (85) 

Lischka et al. use the same rationale as Koppel to rewrite this term as 

ij

ji

ji

EE

cHc
cc

−

∇
=∇

ˆ
.       (86) 

Thus the NAD term can be written as two distinct terms: 
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� ∇+
−

∇
=

nm
mn

j
m

i
n

ij

ji

ij cc
EE

cHc
P ψψ

ˆ
 (87) 

the former being called the CI term and the latter the CSF term (Lischka 2004:7323).  

This is how the NAD term is calculated in Columbus and most likely in Brooklyn as well.  
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