127 research outputs found

    Corporate culture:Changing board responsibilities and changing governance rhetoric

    Get PDF
    The UK’s Financial Reporting Council is telling directors that they should not wait for a crisis before they focus on company culture. The board must set culture, embed it, assess it and report on it. This paper traces the company’s formal legal liability for corporate culture as imposed in Australia and the UK and investigates the new focus on corporate culture in the wake of some notable corporate crises. It uses the Volkswagen emissions scandal as an example of cultural misalignment where the company and individual employees below board level (rather than a board collectively, or board members individually) have been the ones to be found liable despite the increase in rhetoric about the directors’ responsibility for corporate culture. This critique is put into the context of decades of Management research in the field of Corporate Culture that has produced theory, empirical results and an array of practitioner tools, but has also ignited debates so intense as to be labeled the “culture wars”. The paper points up the care that will be needed as legal liability for corporate culture increases before there is a consensus among management scholars on what it means and how it can be measured or assessed

    Latest Permian chars may derive from wildfires, not coal combustion: REPLY

    Get PDF
    ArticleThis is the final version of the article. It was first published by the Geological Society of America via http://dx.doi.org/10.1130/G36804Y.1abstract not availabl

    Charcoal reflectance reveals early Holocene boreal deciduous forests burned at high intensities

    Get PDF
    Published onlineJournal ArticleResearch Support, Non-U.S. Gov'tResearch Support, U.S. Gov't, Non-P.H.S.Wildfire size, frequency, and severity are increasing in the Alaskan boreal forest in response to climate warming. One of the potential impacts of this changing fire regime is the alteration of successional trajectories, from black spruce to mixed stands dominated by aspen, a vegetation composition not experienced since the early Holocene. Such changes in vegetation composition may consequently alter the intensity of fires, influencing fire feedbacks to the ecosystem. Paleorecords document past wildfire-vegetation dynamics and as such, are imperative for our understanding of how these ecosystems will respond to future climate warming. For the first time, we have used reflectance measurements of macroscopic charcoal particles (>180Οm) from an Alaskan lake-sediment record to estimate ancient charring temperatures (termed pyrolysis intensity). We demonstrate that pyrolysis intensity increased markedly from an interval of birch tundra 11 ky ago (mean 1.52%Ro; 485°C), to the expansion of trees on the landscape ~10.5 ky ago, remaining high to the present (mean 3.54%Ro; 640°C) irrespective of stand composition. Despite differing flammabilities and adaptations to fire, the highest pyrolysis intensities derive from two intervals with distinct vegetation compositions. 1) the expansion of mixed aspen and spruce woodland at 10 cal. kyr BP, and 2) the establishment of black spruce, and the modern boreal forest at 4 cal. kyr BP. Based on our analysis, we infer that predicted expansion of deciduous trees into the boreal forest in the future could lead to high intensity, but low severity fires, potentially moderating future climate-fire feedbacks

    Landscape controls on fuel moisture variability in fire-prone heathland and peatland landscapes

    Get PDF
    Background: Cross-landscape fuel moisture content is highly variable but not considered in existing fire danger assessments. Capturing fuel moisture complexity and its associated controls is critical for understanding wildfire behavior and danger in emerging fire-prone environments that are influenced by local heterogeneity. This is particularly true for temperate heathland and peatland landscapes that exhibit spatial differences in the vulnerability of their globally important carbon stores to wildfire. Here we quantified the range of variability in the live and dead fuel moisture of Calluna vulgaris across a temperate fire-prone landscape through an intensive fuel moisture sampling campaign conducted in the North Yorkshire Moors, UK. We also evaluated the landscape (soil texture, canopy age, aspect, and slope) and micrometeorological (temperature, relative humidity, vapor pressure deficit, and windspeed) drivers of landscape fuel moisture variability for temperate heathlands and peatlands for the first time. Results: We observed high cross-landscape fuel moisture variation, which created a spatial discontinuity in the availability of live fuels for wildfire spread (fuel moisture < 65%) and vulnerability of the organic layer to smoldering combustion (fuel moisture < 250%). This heterogeneity was most important in spring, which is also the peak wildfire season in these temperate ecosystems. Landscape and micrometeorological factors explained up to 72% of spatial fuel moisture variation and were season- and fuel-layer-dependent. Landscape factors predominantly controlled spatial fuel moisture content beyond modifying local micrometeorology. Accounting for direct landscape–fuel moisture relationships could improve fuel moisture estimates, as existing estimates derived solely from micrometeorological observations will exclude the underlying influence of landscape characteristics. We hypothesize that differences in soil texture, canopy age, and aspect play important roles across the fuel layers examined, with the main differences in processes arising between live, dead, and surface/ground fuels. We also highlight the critical role of fuel phenology in assessing landscape fuel moisture variations in temperate environments. Conclusions: Understanding the mechanisms driving fuel moisture variability opens opportunities to develop locally robust fuel models for input into wildfire danger rating systems, adding versatility to wildfire danger assessments as a management tool

    The interaction of fire and mankind:Introduction

    Get PDF
    Fire has been an important part of the Earth system for over 350 Myr. Humans evolved in this fiery world and are the only animals to have used and controlled fire. The interaction of mankind with fire is a complex one, with both positive and negative aspects. Humans have long used fire for heating, cooking, landscape management and agriculture, as well as for pyrotechnologies and in industrial processes over more recent centuries. Many landscapes need fire but population expansion into wildland areas creates a tension between different interest groups. Extinguishing wildfires may not always be the correct solution. A combination of factors, including the problem of invasive plants, landscape change, climate change, population growth, human health, economic, social and cultural attitudes that may be transnational make a re-evaluation of fire and mankind necessary. The Royal Society meeting on Fire and mankind was held to address these issues and the results of these deliberations are published in this volume. This article is part of the themed issue ‘The interaction of fire and mankind’

    Accuracy and consistency of grass pollen identification by human analysts using electron micrographs of surface ornamentation

    Get PDF
    • Premise of the study: Humans frequently identify pollen grains at a taxonomic rank above species. Grass pollen is a classic case of this situation, which has led to the development of computational methods for identifying grass pollen species. This paper aims to provide context for these computational methods by quantifying the accuracy and consistency of human identification. • Methods: We measured the ability of nine human analysts to identify 12 species of grass pollen using scanning electron microscopy images. These are the same images that were used in computational identifications. We have measured the coverage, accuracy, and consistency of each analyst, and investigated their ability to recognize duplicate images. • Results: Coverage ranged from 87.5% to 100%. Mean identification accuracy ranged from 46.67% to 87.5%. The identification consistency of each analyst ranged from 32.5% to 87.5%, and each of the nine analysts produced considerably different identification schemes. The proportion of duplicate image pairs that were missed ranged from 6.25% to 58.33%. • Discussion: The identification errors made by each analyst, which result in a decline in accuracy and consistency, are likely related to psychological factors such as the limited capacity of human memory, fatigue and boredom, recency effects, and positivity bias

    Hydroclimate variability was the main control on fire activity in northern Africa over the last 50,000 years

    Get PDF
    North Africa features some of the most frequently burnt biomes on Earth, including the semi-arid grasslands of the Sahel and wetter savannas immediately to the south. Natural fires are fuelled by rapid biomass production during the wet season, its desiccation during the dry season and ignition by frequent dry lightning strikes. Today, fire activity decreases markedly both to the north of the Sahel, where rainfall is extremely low, almost eliminating biomass over the Sahara, and to the south where forest biomes are too wet to burn. Over the last glacial cycle, rainfall and vegetation cover over northern Africa varied dramatically in response to gradual astronomically-forced insolation change, changes in atmospheric carbon dioxide levels, and abrupt cooling events over the North Atlantic Ocean associated with the reorganisation of Meridional Overturning Circulation (MOC). Here we report the results of a study into the impact of these climate changes on fire activity in northern African over the last 50,000 years (50 kyr). Our reconstructions come from marine sediments with strong age control that provide an uninterrupted record of charcoal particles exported from the African continent. We studied three sites on a latitudinal transect along the northwest African margin between 21 and 9°N. Our sites exhibit a distinct latitudinal relationship between past changes in rainfall and fire activity. At the southernmost site (GeoB9528-3, 9°N), fire activity decreased during intervals of increasing humidity, while our northernmost site (ODP Site 658, 21°N) clearly demonstrates the opposite relationship. The site in the middle of our transect, offshore of the present day southern Sahel today (GeoB9508-5, 15°N), exhibits a “Goldilocks” relationship between fire activity and hydroclimate, wherein charcoal fluxes peak under intermediate rainfall climate conditions and are supressed by transition to more arid or more humid conditions. Our results are remarkably consistent with the predictions of the intermediate fire-productivity hypothesis developed in conceptual macroecological models and supported by empirical evidence of modern day fire activity. Feedback processes operating between fire, climate and vegetation are undoubtedly complex but temperature is suggested to be the main driver of temporal change in fire activity globally, with the precipitation-evaporation balance perhaps a secondary influence in the Holocene tropics. However, there is only sparse coverage of Africa in the composite records upon which those interpretations are based. We conclude that hydroclimate (not temperature) exerted the dominant control on burning in the tropics of northern Africa well before the Holocene (from at least 50 ka).publishedVersio

    Corporate accountability in a globalizing environment : empirical evidence

    Get PDF
    For many years, there have been vigorous arguments between supporters of the shareholder and stakeholder models as to which system is more effective in enhancing corporate values and disciplining managements. What view one takes of course very much depends on political viewpoint and national background. For example. economists or lawyers in the US or UK may argue that the Anglo-American shareholder model is more appropriate. This is because there is at least a criterion (i. e. share price) by which you could measure and compare corporate performance. Supporters of the shareholder model may argue that the concept of stakeholder is anticapitalism and that it is too broad and abstract, providing no clear boundary as to who may or may not fall into that category. Yet in contrast, their Japanese or German (and other Continental European) counterparts may argue that the Anglo-American approach of primarily focusing on share value and wealth maximization is too narrow and an over-simplistic view of the role played by corporations. Supporters of the stakeholder theory would argue that it is necessary to take into consideration interests beyond those of shareholders. This is because businesses ought to demonstrate certain responsibilities towards the society in which they operate. This thesis neither supports nor challenges the validity of either the shareholder or stakeholder approach. Instead it attempts to search for a "middle approach". The aim is to bring the concept of both values together to form a corporate governance model based on convergence and co-existence. The main proposal of this thesis is as follows. Living in the twenty-first century, we must understand that our world is neither being Americanized nor Europeanized or Orientalised. We are instead being globalized. National identities in terms of corporations will become less and less important as multinational corporations extend their activities throughout the globe. With the advance in technology and increase in cross-border business transactions amongst countries, it is no longer justified to argue that "one business model fits all". As academics and practitioners we must therefore explore ways in which we could bring the best out of different models so that they can be converged to form a more coherent approach towards the balancing of different conflicting interests.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    A modeling case for high atmospheric oxygen concentrations during the Mesozoic and Cenozoic

    Get PDF
    Changes in atmospheric oxygen concentration over Earth history are commonly related to the evolution of animals and plants. But there is no direct geochemical proxy for O2 levels, meaning that estimations rely heavily on modeling approaches. The results of such studies differ greatly, to the extent that today's atmospheric mixing ratio of 21% might be either the highest or lowest level during the past 200 m.y. Long-term oxygen sources, such as the burial in sediments of reduced carbon and sulfur species, are calculated in models by representation of nutrient cycling and estimation of productivity, or by isotope mass balance (IMB)—a technique in which burial rates are inferred in order to match known isotope records. Studies utilizing these different techniques produce conflicting estimates for paleoatmospheric O2, with nutrient-weathering models estimating concentrations close to, or above, that of the present day, and IMB models estimating low O2, especially during the Mesozoic. Here we re-assess the IMB technique using the COPSE biogeochemical model. IMB modelling is confirmed to be highly sensitive to assumed carbonate δ13C, and when this input is defined following recent compilations, predicted O2 is significantly higher and in reasonable agreement with that of non-IMB techniques. We conclude that there is no model-based support for low atmospheric oxygen concentrations during the past 200 m.y. High Mesozoic O2 is consistent with wildfire records and the development of plant fire adaptions, but links between O2 and mammal evolution appear more tenuous
    • …
    corecore