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Fire Ecology

Landscape controls on fuel moisture 
variability in fire-prone heathland and peatland 
landscapes
Kerryn Little1*  , Laura J Graham1,2, Mike Flannigan3, Claire M Belcher4 and Nicholas Kettridge1 

Abstract 

Background Cross-landscape fuel moisture content is highly variable but not considered in existing fire danger 
assessments. Capturing fuel moisture complexity and its associated controls is critical for understanding wildfire 
behavior and danger in emerging fire-prone environments that are influenced by local heterogeneity. This is par-
ticularly true for temperate heathland and peatland landscapes that exhibit spatial differences in the vulnerability 
of their globally important carbon stores to wildfire. Here we quantified the range of variability in the live and dead 
fuel moisture of Calluna vulgaris across a temperate fire-prone landscape through an intensive fuel moisture sampling 
campaign conducted in the North Yorkshire Moors, UK. We also evaluated the landscape (soil texture, canopy age, 
aspect, and slope) and micrometeorological (temperature, relative humidity, vapor pressure deficit, and windspeed) 
drivers of landscape fuel moisture variability for temperate heathlands and peatlands for the first time.

Results We observed high cross-landscape fuel moisture variation, which created a spatial discontinuity in the avail-
ability of live fuels for wildfire spread (fuel moisture < 65%) and vulnerability of the organic layer to smoldering 
combustion (fuel moisture < 250%). This heterogeneity was most important in spring, which is also the peak wildfire 
season in these temperate ecosystems. Landscape and micrometeorological factors explained up to 72% of spatial 
fuel moisture variation and were season- and fuel-layer-dependent. Landscape factors predominantly controlled spa-
tial fuel moisture content beyond modifying local micrometeorology. Accounting for direct landscape–fuel moisture 
relationships could improve fuel moisture estimates, as existing estimates derived solely from micrometeorological 
observations will exclude the underlying influence of landscape characteristics. We hypothesize that differences 
in soil texture, canopy age, and aspect play important roles across the fuel layers examined, with the main differences 
in processes arising between live, dead, and surface/ground fuels. We also highlight the critical role of fuel phenology 
in assessing landscape fuel moisture variations in temperate environments.

Conclusions Understanding the mechanisms driving fuel moisture variability opens opportunities to develop locally 
robust fuel models for input into wildfire danger rating systems, adding versatility to wildfire danger assessments 
as a management tool.

Keywords Calluna vulgaris, Fire danger, Fire weather, Landscape ecology, Phenology, Spatial controls, Temperate 
ecosystems, United Kingdom, Wildfire
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Resumen 

Antecedentes El contenido de humedad de los combustibles a través del paisaje es altamente variable, aunque 
no es considerado en las determinaciones actuales del peligro de incendio. Capturar la complejidad y sus controles 
asociados es crítico para entender el comportamiento del fuego y el peligro de incendios en ambientes propensos 
al fuego, que son influenciados por heterogeneidades locales. Esto es particularmente cierto para ambientes de 
brezales (i.e. comunidades de plantas leñosas de bajo crecimiento generalmente de la familia Ericaceae) y turberas, 
que exhiben diferencias espaciales en su vulnerabilidad en cuanto a su importancia global como almacenes de 
carbono en relación con los incendios. Cuantificamos acá el rango de variabilidad en el combustible vivo y muerto 
de Calluna vulgaris a lo largo de un paisaje propenso al fuego mediante una campaña de muestreo intensivo de la 
humedad de combustible conducido en los Páramos de Yorkshire del Norte, en el Reino Unido (North Yorkshire Moors, 
UK.) Evaluamos asimismo por vez primera, el paisaje (textura del suelo, edad del dosel, aspecto y pendiente), y los 
factores micro meteorológicos (temperatura, humedad relativa, déficit de vapor de difusión, y velocidad del viento) 
que influyen en la variación de la humedad de estos brezales y turberas templados.

Resultados Observamos una alta variación en la humedad del combustible a través del paisaje, lo cual crea una 
discontinuidad espacial en la disponibilidad de combustibles vivos para la propagación del fuego (humedad del com-
bustible < 65%) y vulnerabilidad del estrato orgánico a la combustión latente (humedad del combustible del < 250%). 
Esta heterogeneidad fue más importante en primavera, que es también el pico de la estación de fuegos en estos eco-
sistemas templados. El paisaje y los factores micro meteorológicos explicaron hasta un 72% de la variación espacial 
del contenido de humedad de los combustibles, y fueron dependientes del estrato de combustibles y de la estación 
del año. Los factores del paisaje controlaron predominantemente el contenido de humedad a nivel espacial, más allá 
de modificar la micro meteorología local. El contar con las relaciones directas entre paisaje-humedad del combus-
tible puede mejorar la estimación de la humedad del combustible, dado que las estimaciones existentes basadas 
solamente en observaciones micro meteorológicas excluirán la marcada influencia de las características del paisaje. 
Hipotetizamos que las diferencias en la textura del suelo, la edad del dosel, y el aspecto juegan roles importantes en 
todos los estratos examinados con las principales diferencias que surgen entre los combustibles vivos y muertos y los 
superficiales (aéreos) y rastreros (que tocan el suelo). También enfatizamos el rol crítico de la fenología de los combus-
tibles en la determinación de la variación de la humedad de los combustibles a escala de paisaje en estos ecosistemas 
templados.

Conclusiones El entender los mecanismos de determinan la variabilidad en la humedad de los combustibles abre 
la oportunidad para desarrollar modelos robustos de combustibles locales como input para sistemas de peligro de 
incendios, adicionando versatilidad a las determinaciones de peligro de incendios como una herramienta de manejo.

Background
Temperate peatlands and heathlands contain globally 
important carbon stores that are becoming increas-
ingly susceptible to wildfires under climate and land use 
change (Page and Baird 2016; Kirkland et al 2023). Peat-
lands store 550 gigatons of organic soil carbon globally, 
and approximately 0.19–0.88 million  km2 of these peat-
lands are found in temperate latitudes (30–50°) (Batjes 
1996; Yu 2012). Surface wildfires can lead to the smold-
ering combustion of carbon-rich peatland soils (Kirk-
land et  al 2023). These fires are resource-intensive to 
extinguish and can result in significant carbon emissions 
(Mickler 2021). Fuel moisture is a key component of fuel 
flammability, ignition probability, and subsequent wild-
fire behavior (Matthews 2014; Scarff et al 2021). As such, 
fuel moisture content is important for determining peat-
land and heathland wildfire danger—the combination of 
factors affecting the initiation, spread, and ease of control 
of a wildfire (Natural Resources Canada 2021).

Existing operational fire weather indices across north-
west Europe (e.g., EFFIS: San-Miguel-Ayanz et al (2012)) 
use weather information to predict the danger of a suc-
cessful ignition, drawing on regional assessments of fuel 
moisture (for example the Fine Fuel Moisture Code of 
the Canadian Fire Weather Index System (CFWIS)). 
However, fuel moisture content can be highly spatially 
variable at the landscape level (Nyman et al 2015; Walsh 
et al 2017). Regional estimates do not capture this spatial 
heterogeneity of fuel moisture and consequently may not 
reflect local conditions (Nyman et al 2018; Matthews et al 
2019). Current risk assessments therefore do not account 
for fuel-driven within-landscape vulnerability to wild-
fires and their consequent ecological, biogeochemical, 
or socioeconomic impacts (Davies et al 2016; Hokanson 
et al 2016).

Studies that have captured the extent of fuel moisture 
variability at the landscape level using direct measure-
ment techniques are rare and have not been conducted 
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within temperate peatland and heathland landscapes. 
Previous research has utilized indirect measures of fuel 
moisture content such as soil and litter moisture sensors 
to quantify the moisture variability of fire-prone forest 
litter layers (Nyman et  al 2015; Slijepcevic et  al 2018). 
However, in dwarf shrub Calluna vulgaris dominated 
temperate peatland and heathlands, both the dead and 
live vegetation are important for wildfire ignition and 
spread, with live fuels often comprising the largest com-
ponent of the fuel load (Davies and Legg 2008, Davies 
and Legg 2010). The magnitude of fuel moisture variabil-
ity at the landscape scale and the controls on that varia-
bility will therefore strongly differ from forest ecosystems 
(Dickman et  al 2023). Further, fuel moisture within the 
surface moss, litter, and organic soils is important for 
determining the potential for smoldering combustion 
and the associated fire severity (Grau-Andrés et al 2018). 
Low organic soil moisture (< 250%) facilitates below-
ground smoldering and consequent loss of carbon to the 
atmosphere (Lukenbach et al 2015).

In addition to the quantification of cross-landscape fuel 
moisture variability, the landscape characteristics that 
control this variability have not yet been fully resolved. 
Average regional-scale fuel moisture is likely modulated 
by landscape-scale variability in hydrology, meteorology, 
ecology, and plant physiology. Again, previous research 
into how landscape characteristics control fuel moisture 
content has primarily focused on forested fuels and land-
scapes. Four key landscape characteristics have emerged: 
soil properties, landscape position, topography/aspect, 
and vegetation structure (see references within Table 1). 
The extent to which these landscape characteristics are 
important for fuel moisture within temperate peatland 
and heathland fuels is unknown. The complexity of land-
scape ecological field studies has also meant that land-
scape characteristics can be confounded and difficult 
to isolate (e.g., all of the south-facing sites contained all 
of the highest porosity soils, and the link between veg-
etation cover on equatorial versus polar-facing slopes 
Nyman et al 2015; Slijepcevic et al 2018)).

Cross-landscape differences in fire behavior and fire 
danger are particularly relevant to consider in emerging 
fire-prone environments, where fire behavior, including 
wildfire spread through live fuels and smoldering com-
bustion of organic soils, can be influenced by small-scale 
heterogeneity in landscape characteristics. It is there-
fore important to understand fuel moisture dynamics 
at the landscape level to develop appropriate fuel mod-
els for inclusion in fire danger assessments in temperate 
ecosystems. To this end, we assess (1) what is the range 
of variability in the live and dead fuel moisture content 
of Calluna vulgaris across a temperate fire-prone land-
scape? and (2) what are the relative contributions of 

landscape and micrometeorological drivers of fuel mois-
ture variability at the landscape scale? In doing so, we 
provide the critical understanding necessary to develop 
tailored fuel moisture models for input in wildfire danger 
rating systems, to support local-scale fire management 
decisions.

Methods
Study region
Our study region was the North Yorkshire Moors 
National Park, UK (Fig. 1). The dwarf shrub Calluna vul-
garis is abundant in peatlands and heathlands that form 
large areas of fire-prone landscapes across north-western 
Europe, including the UK (Gimingham et al 1979; Glaves 
et al 2020). Upland areas of the North Yorkshire Moors 
comprise extensively managed Calluna vulgaris-domi-
nated peatland and wet heathland ecosystems (Simmons 
1990). Calluna has been burned on rotation, creating a 
patchwork mosaic of homogenous Calluna plots of dif-
ferent ages across the landscape, allowing the role of 
vegetation structure and topography/aspect that have 
previously been confounded to be isolated (Nyman et al 
2015; Slijepcevic et al 2018). The landscape also consists 
of a diversity of soil textures and associated geologies, 
slopes, aspect, and landscape positions, within the given 
regional moist, maritime climate. As such, the region 
provides an ideal location to examine the underlying con-
trols on spatial fuel moisture variability in critical fire-
prone temperate landscapes.

Experimental design and site selection
We selected 36 plots across the North Yorkshire Moors. 
The plot dimensions were approximately 20 × 20 m of 
homogenous Calluna as this was the size burned by 
land managers to create the patchwork mosaic of Cal-
luna across the landscape. We decided on 36 plots as 
this allowed each plot to contain a unique combina-
tion of the four landscape factors hypothesized to be 
important for spatial fuel moisture variability based on 
previous research: soil texture, canopy age, aspect, and 
hillslope position (Fig.  2; Table  1). We selected poten-
tial plots by overlaying the source maps from Table 1 to 
identify areas that contained all possible combinations of 
landscape factors. We then visited the areas to identify 
suitable plots with land managers. The criteria for the 36 
plots were as follows: (1) each plot must possess a unique 
combination of landscape factors, (2) plots must be suf-
ficiently accessible to allow sampling to be carried out at 
all plots on the same day (using multiple samplers), and 
(3) plots must meet requirements of land managers (e.g., 
minimize disruption to nesting birds or land manage-
ment activities). Fuel moisture sampling is intensive, so 
we selected plots that were sufficiently close to allow field 
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campaigns to be conducted within a single day in acces-
sible locations, while capturing the diversity of soils that 
tend to be spatially disparate.

We identified coarse, fine, and peaty textured soils 
using Soilscapes, a classification derived from the 
detailed National Soil Map for England and Wales 
(Farewell et  al 2011). We validated soil texture 

classifications with manual textural assessments of soil 
samples collected in the field (Thien 1979). We selected 
plots on north- and south-facing hillslopes using the 
OS Terrain® 50 DTM (Ordnance Survey 2019). In the 
North Yorkshire Moors, peatland and heathland land 
covers transition to grassland/agricultural land prior to 
reaching the topographic low, so the hillslope position 

Fig. 1 The North Yorkshire Moors National Park study region situated in northeast England. We established 36 measurement plots clustered in six 
key areas of the national park. Source: Esri, Maxar, Earthstar Geographics, and the GIS User Community. © Natural England copyright. Contains 
Ordnance Survey data © Crown copyright and database right 2022

Fig. 2 Conceptual figure of the 36 sample plots (colored circles) comprising each possible combination of hypothesized landscape drivers: soil 
texture (coarse, peat, or fine); canopy age (building or mature); hillslope position (low, medium, or high); and aspect (north or south). We installed 
weather stations next to each pair of building and mature Calluna plots
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in these ecosystems is defined as follows: high, the pla-
teau on the hilltop; mid, the hillslope below this pla-
teau; and low, a plateau below a slope.

We examined the combined influence of fuel age and 
height between contrasting building and mature heather 
canopies. We used these terms to represent the two dif-
ferent classes of younger (shorter) and older (taller) 
heather life stages. Previous research has established 
the significance of Calluna biomass, proportion of live 
and dead fuel, and life stage for fuel moisture content 
and wildfire behavior (Gimingham 1992; Davies and 
Legg 2011; Santana and Marrs 2014; Log 2020). Within 
the constraints of the landscape, we selected exist-
ing building and mature Calluna plots side by side to 
isolate canopy differences from our other landscape 
factors of interest. We distinguished age using time-
since-last-burn records held by land managers. Mature 
canopy plots were last burned 15–20 years ago and had 
an average height of 60 cm and accumulated moss/litter 
layer depth of 5 cm. Building canopy plots were burned 
in the last 5–10 years and had an average height of 30 
cm and accumulated moss/litter layer depth of 2.5 cm. 
This classification allowed us to (1) maximize differences 
between the two categories of interest, so the building 
canopy plots were distinctly different from the mature 
canopy plots; (2) ensure consistency across sites as all 
sites within each category have a similar age, height, 
structure, and management approach; and (3) ensure 
within-plot variation is low relative to between-plot 
variation.

Data collection
Fuel moisture sampling
Wildfires generally occur across two fire seasons in 
northwestern temperate Europe, a primary peak season 
in spring and a secondary season in summer (Belcher 
et  al 2021; Cardíl et  al 2023). To capture the temporal 
variations in landscape controls on a phenological time-
scale, we collected fuel moisture samples in hot, dry 
fire weather conditions across the spring and summer 
fire seasons (Fig S1). We collected three sets of samples 
across a 1-week drying period in April 2021, during the 
peak spring wildfire season, and two further sets in June 

and July 2021, respectively, during the secondary sum-
mer wildfire season. During each campaign, we collected 
samples within each of the 36 plots between 1100 and 
1700, randomizing the order of sampling as much as 
logistically possible.

Fuel moisture exhibits vertical variation from the 
organic to the canopy layer that is relevant for deter-
mining wildfire behavior. For example, fires will often 
burn through the canopy of Calluna without involving 
litter and ground fuels. Therefore, in each plot, we sam-
pled seven fuel layers: Calluna live canopy, live stems 
(< 2 mm diameter), dead canopy, dead stems (< 2 mm 
diameter), surface moss (top 2 cm), litter (top 2 cm), 
and the organic layer beneath the Calluna (top 5 cm 
of organic material above mineral soil). We combined 
lower canopy material with live stems following a study 
by Davies and Legg (2011), in which a factor analysis 
grouped these two fuel layers together, separate from 
the upper canopy.

We collected samples following the sampling protocol 
of Little et al. (2024), modified from Norum and Miller 
(1984). We set out a 25-m transect through each plot 
and walked along it, collecting fuel clippings from ca. 
10 different plants into one aluminum tin (250 ml) with 
a screw-fit lid sealed with masking tape. We collected 
the same amount of biomass from each plant along 
the transect, filling the 250 ml tin ¾ full. We selected 
plants haphazardly, as the aim was to ensure samples 
were representative of within-plot variability rather 
than individual plants. We collected Calluna canopy 
and stem material by clipping sprigs with stem diam-
eter < 2 mm and separating the leafy canopy material 
from the woody lower stems. We collected the top 2 cm 
of surface moss and litter at 10 points along the tran-
sect, removing any highly decomposed material from 
the base of the layer. Finally, after exposing the mate-
rial beneath the surface moss and litter, we extracted 
the top 5 cm of organic material at five points along the 
transect using a small corer.

We measured gravimetric fuel moisture content 
(mass of water per mass of dried sample, %, referred to 
throughout as fuel moisture content (Eq. 1)) following 
the same protocol. Briefly, we weighed the tinned sam-
ples (wet weight) as soon as possible after collection, 
and within a maximum of 24 h. We subsequently dried 
the samples for at least 48 h at 80 °C, consistent with 
previous Calluna vulgaris fuel moisture studies (e.g., 
Davies et al 2010), and then reweighed the samples (dry 
weight).

Micrometeorological variables
We recorded 1.25-m air temperature and relative 
humidity at 15-min intervals at each pair of building 
and mature Calluna sites with HOBO U23-001A PRO 

(1)Fuel moisture content =
(sample wet weight − sample dry weight)

(sample dry weight − container tare weight)
∗ 100
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V2 (Onset Computer Corporation, Bourne, MA) sen-
sors housed within radiation shields. We installed Davis 
Vantage Pro wind anemometers (Davis Instruments) 
at 2 m on the north and south sides of the three main 
hillslopes at equivalent elevations to monitor wind 
speed and direction at 1-min intervals.

Data analysis
Each of the 36 sites represented a unique combination 
of the four landscape factors of interest. This experi-
mental design allowed us to use linear regression mod-
els to assess the influence of landscape factors without 
confounding between our hypothesized drivers. We 
developed three linear regression models to assess the 
influence of landscape factors, micrometeorological 
factors, and the overall contribution of both groups of 
factors on fuel moisture variation. We ran these three 
models for each combination of fuel layer and sampling 
month to examine fuel layer and season-dependent rela-
tionships (21 variations of each model).

The landscape model was defined by the hypothesized 
controls on landscape-scale fuel moisture variability, as 
identified from the literature—soil texture, canopy cover, 
hillslope position, and aspect. To define the micromete-
orological model, we first selected parameters considered 
to be important for fire weather to investigate—tempera-
ture, relative humidity, wind speed, and vapor pressure 
deficit. We included vapor pressure deficit (calculated 
from air temperature and relative humidity measure-
ments) based on recent demonstrations of its importance 
for live fuel moisture content (Griebel et  al 2023). We 
then evaluated different lag periods and parameters to 
derive the best relationship between the micrometeoro-
logical variables and fuel moisture, with micrometeoro-
logical variables averaged 5-h before time-of-sampling 
performing best (Table S1). We excluded uneven pre-
cipitation distribution as a significant control on spa-
tial fuel moisture variability in this study, as we targeted 
the driest periods of the fire season and monitoring of 
precipitation using hand gauges at each pair of sites 
throughout the sampling period did not reveal any major 
between-site differences. We also considered relation-
ships between fuel moisture content and the Canadian 
Fire Weather Index System (CFWIS) as this is the system 
currently used within the UK Met Office Fire Severity 
Index (MOFSI) to assess aspects of fire weather (Arnell 
et  al 2021). However, we excluded these from the main 
analyses due to their comparatively poorer performance 
(Fig S2).

We used variance partitioning to understand the rela-
tive importance of landscape or micrometeorological 
variables for fuel moisture content (Nakagawa and Schi-
elzeth 2013). We calculated the variance explained ( R2 ) 

for the landscape (soil texture, canopy age, hillslope posi-
tion, and aspect), micrometeorological (1.25-m air tem-
perature, relative humidity, vapor pressure deficit, and 
wind speed averaged 5-h before time-of-sampling), and 
combined (both landscape and micrometeorological fac-
tors) statistical models. We calculated the independent 
contributions of landscape and micrometeorological 
models as R2

full − R
2
met and R2

full − R
2
landscape, respectively. 

The shared variance explained was the difference 
between the total variance explained and the independ-
ent contributions of the two sub-models.

We used weighted effect coding on individual regres-
sion models (21 variations of four landscape models) for 
each landscape factor to narrow in on the role of land-
scape drivers by producing model estimates as deviations 
from the sample mean (Sweeney and Ulveling 1972). 
We tested the assumptions of all of the linear models by 
producing Q-Q plots (for normality) and residual vs pre-
dicted plots (for heteroscedasticity) using the DHARMa 
R package (Hartig 2022). No significant deviations from 
the assumptions were seen in the majority of the 147 
models (Fig S3). To test for spatial autocorrelation we cal-
culated Moran’s I using the lctools R package (Kalogirou 
2020). No significant deviations from the assumptions 
were found for the majority of the models (Table S3-S5). 
We conducted all statistical analyses in R version 4.1.2 
(R Core Team 2022), using packages cffdrs (Wang et  al 
2017), plantecophys (Duursma 2015), and wec (Groten-
huis et al 2016).

Results
Fuel moisture variability
Fuel moisture content was highly spatially variable across 
the 36 plots in the North Yorkshire Moors. Observed 
fuel moisture variability was the season- and fuel-layer-
dependent (Fig.  3). Live Calluna fuel moisture content 
was the lowest and least variable in spring. Live fuel 
moisture content varied by 54% (percentage points) for 
Calluna canopy between the driest and wettest site in 
spring, increasing to 97% by July. Previous research has 
developed fuel moisture thresholds for certain fuel lay-
ers that indicate the fuel moisture content below which 
a fire is likely to sustain ignition (vertical lines in Fig. 3). 
Live fuel moisture content was found to vary across the 
47–65% threshold for sustained fire ignition (Taylor et al 
2021), particularly in spring (Fig. 3 dashed vertical lines 
on live canopy graph). Cross-landscape organic layer fuel 
moisture content varied across the 250% fuel moisture 
threshold for smoldering combustion (Lukenbach et  al 
2015) during both spring and summer (Fig.  3 vertical 
dashed line on organic layer graph). Dead Calluna, moss, 
litter, and organic layers were more variable in spring 
than summer. Surface moss and litter layer fuel moisture 
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content spanned a range of 191 and 156%, respectively, 
between the driest and wettest sites.

Landscape and micrometeorological drivers of fuel 
moisture variability
Combined landscape and micrometeorological factors 
explain 16–72% of the total cross-landscape fuel moisture 
variability (Fig. 4). Overall, the landscape models tend to 
outperform the micrometeorological models in explain-
ing the spatial distribution of fuel moisture. However, 
the importance of landscape and micrometeorological 
factors show differences between fuel layers and sea-
sons. The overlap between the landscape and microme-
teorological models in Fig.  4 shows the shared variance 
explained between the models. For live Calluna canopy 
fuel moisture, the shared variance exceeds the individual 
variance of each model, which suggests there is an inter-
action between landscape and micrometeorological fac-
tors. Landscape factors are consistently more important 
drivers of dead Calluna and litter layer fuel moisture. 
The total variance explained for dead Calluna is higher 
in summer (50–72%) than in spring. Where landscape 
factors drive fuel moisture variability, the individual 
contribution of the landscape model largely outweighs 
the shared variance, indicating that landscape factors 

control fuel moisture variation beyond simply modify-
ing local micrometeorology. The micrometeorological 
model only outperforms the landscape model for the 
moss layer in April (21%) and June (45%), the live canopy 
in April (47%), and the organic layer in July (22%). There 
is no clear difference in the importance of landscape and 
micrometeorological factors for organic layer fuel mois-
ture variation outside of July.

Linear regression models quantified the deviation in 
fuel moisture percentage from the sample mean associ-
ated with specific landscape factors (Table S2). Soil tex-
ture exerts the greatest control on the spatial distribution 
of fuel moisture content for all layers except dead Cal-
luna. Live Calluna canopy material is up to 20% drier 
than average on fine-textured soils and up to 19% wet-
ter than average on coarse-textured soils, resulting in a 
39% percentage point difference in fuel moisture esti-
mates across the landscape. This magnitude of difference 
increases through summer. Live Calluna stems show a 
seasonal reversal in relationship with soil texture, where 
fuel moisture is highest (lowest) on fine soils in April 
(June and July). There are also some instances where rela-
tionships between landscape factors and fuel moisture 
switch backwards and forwards inconsistently across 
the sampling period (e.g., moss, litter, and organic layer 

Fig. 3 Density plots of fuel moisture distribution for Calluna vulgaris fuel layers across the 36 plots in the North Yorkshire Moors during hot, dry 
conditions April–July 2021 (number of samples for each fuel layer panel = ca. 180). Dashed vertical lines depict fuel moisture thresholds for sustained 
ignition within the different fuel layers based on previous research (Lukenbach et al 2015; Taylor et al 2021). One line = threshold; two lines = range 
of lower and upper threshold; no line = no conclusive threshold for this species
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relationships with soil texture). In July, organic layer fuel 
moisture is significantly (46.6%) lower than average on 
coarse soils.

Canopy age consistently controls fuel moisture varia-
tion across all fuel layers. Live Calluna canopy is up to 9% 
drier in mature Calluna, increasing in magnitude from 
spring to summer. Dead Calluna and organic layer fuels 
are driest in building Calluna (organic layer fuel moisture 
is 20–29% lower in summer). The influence of aspect var-
ies between live Calluna and surface fuels. Live canopy 
fuel moisture content is up to 9% wetter on south slopes 
in summer. Surface fuels in contrast are driest on south 
slopes, except for June, where all fuel layers are wetter on 
south slopes than on north slopes. The influence of slope 
position is least clear, though Calluna live stems and the 
organic layer are consistently driest at low hillslope posi-
tions. Conversely, Calluna live canopy is wettest at low 
hillslope positions.

Discussion
Cross‑landscape fuel moisture is highly variable
Plant phenology drives fuel moisture variability in live 
Calluna. Fuel moisture content is low in spring follow-
ing winter dormancy, resulting in a high load of fuel in 

an ignitable state. As temperatures increase and sap flow 
restarts in Calluna, a “green-up” is observed where new 
leaf and shoot growth increases fuel moisture content 
(Bannister 1964b; Davies et al 2010). There is an impor-
tant spatial dimension to this recognized temporal vari-
ability in fuel moisture. Live fuel moisture content was 
found to be most variable in summer, linked to obser-
vations of spatial variation in the timing of Calluna 
green-up across the landscape. However, it is the spatial 
variation in live fuel moisture in the peak wildfire sea-
son of spring in the UK (Belcher et al 2021) that is espe-
cially important from a wildfire danger perspective. On 
the days sampled, live canopy fuel moisture content var-
ied across the threshold for sustained ignition (47–65%) 
identified by Taylor et  al. (2021). Due to landscape het-
erogeneity, live Calluna fuel moisture was below the 
threshold for contributing to wildfire spread in some 
locations and above it in others (Fig.  3). Moreover, live 
Calluna can form a major component of the available 
fuel for wildfire spread and can behave independently 
akin to a mini-crown fire (Fernandes et  al 2000; Davies 
and Legg 2016). Similarly, fuel moisture in the organic 
layer was distributed above and below the 250% thresh-
old for smoldering combustion (Lukenbach et  al 2015; 

Fig. 4 Spatial variation in fuel moisture that can be explained by the landscape and micrometeorological linear regression models. Variance 
partitioning for the a April, b June, and c July sample sets, showing the contribution of the overall linear regression model towards explaining fuel 
moisture variation (red) and the total variance explained by the landscape factors (purple) and micrometeorological factors (orange)
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Fig.  3), indicating the differential potential for higher 
severity wildfires due to smoldering combustion across 
the landscape.

Landscape factors drive fuel moisture variability
Spatial variation in the distribution of fuel moisture cre-
ates a cross-landscape on/off thresholding of fuel avail-
ability. It is clear from our results that regional estimates 
of fuel moisture will not capture important local spatial 
variability driven by either landscape or micrometeoro-
logical factors. Overall, landscape factors were found to 
be more important drivers of fuel moisture variation than 
micrometeorological factors. There are a small number 
of instances where the shared variance outweighs the 
individual contributions of each model, suggesting there 
may be some form of interaction between landscape and 
micrometeorological factors, such as the landscape fac-
tors modifying micrometeorology. However, for the most 
part, landscape factors control fuel moisture content 
beyond simply modifying micrometeorology. This is a 
key insight towards improving the accuracy of fuel mois-
ture estimates by accounting for landscape–fuel mois-
ture relationships directly, as estimates derived solely 
from micrometeorological observations will exclude the 
underlying influence of landscape controls. Fire weather 
index systems that are based on weather parameters 
alone will have limited ability to provide fire managers 
with accurate predictions in these ecosystems.

We hypothesize that soil texture differences are impor-
tant controls on fuel moisture variability. We observed 
higher live canopy fuel moisture content on coarse-tex-
tured soils than fine-textured soils and blanket peat, with 
the magnitude of difference increasing through summer, 
which is consistent with our field observations of Cal-
luna green-up occurring earlier over coarse soils. Fine 
textured soil and blanket peat more effectively retain 
water, but this water is not necessarily available for plants 
to uptake (Easton and Bock 2016). Moreover, it may be 
that the North Yorkshire Moors did not experience a suf-
ficiently moisture-limited state during field sampling to 
observe the expected impact of soil drainage properties 
on live fuel moisture. These results likely reflect the com-
plexity of soil–fuel moisture relationships beyond simply 
water availability and are hypothesized to be related to 
both plant adaptive and soil hydraulic traits.

Ecophysiological research has demonstrated the 
importance of soil and plant hydraulic traits in regulat-
ing live fuel moisture content (Scarff et  al 2021; Brown 
et al 2022a; Nolan et al 2022; Rao et al 2022; Ruffault et al 
2022). This may provide a useful framework to simulate 
the moisture of temperate fuels like Calluna, building 

on pioneering physiological (Bannister 1964a; 1964b) 
and more recent live fuel moisture modeling (Davies 
and Legg 2008). Ecophysiological traits governing fuel 
moisture variability have been explored temporally for 
Calluna (Davies and Legg 2008; Davies et  al 2010) and 
between different species (Brown et  al 2022a; Rao et  al 
2022); however, the ecophysiological controls on the 
spatial distribution of within-species fuel moisture as 
quantified here have not yet been unraveled. Collabora-
tion between wildfire scientists and plant physiologists 
remains (cf. Davies and Legg 2008; Dickman et al 2023) 
highly important for discerning the cross-landscape con-
trols on live fuel moisture and therefore wildfire danger 
in temperate fire-prone landscapes.

We observed a fuel layer-dependent relationship 
between canopy age and fuel moisture content. Live 
fuel moisture content was found to be lower in mature 
Calluna plant canopies and is linked to a greater pro-
portion of old growth and a lower proportion of new 
growth when compared to younger Calluna plants. Con-
versely, in the dead fuel components of the canopy and 
organic layer, fuel moisture contents were found to be 
lower in the building stage of Calluna. These findings 
suggest that the Calluna canopy (that is elevated above 
the ground) acts in a similar manner to that of the over-
story in forested fuels, that form a boundary between the 
atmosphere and underlying surface fuels (Brown et  al 
2022b; Nyman et  al 2018; Walsh et  al 2017). Contrary 
to previous studies, aspect and slope were found to play 
a smaller role in influencing cross-landscape fuel mois-
ture variation. However, this could be due to the absence 
of sufficiently steep slopes in the study region such that 
we did not observe large differences between sites. On 
steeper gradients and in more complex environments, 
we would expect these factors to be more important. 
We were able to separate the correlation between denser 
vegetation cover on polar aspects that likely amplified 
the “aspect effect” in previous research (Slijepcevic et al 
2018). Therefore, it is not particularly surprising that 
we observed a smaller influence of aspect when isolated 
from other landscape factors.

While the role of phenology in the temporal variability 
of live Calluna fuel moisture has been well documented 
(Davies and Legg 2008), it is clear that there is also an 
important phenological component to the spatial dis-
tribution of live fuel moisture variability. We have dem-
onstrated that the direction of landscape–fuel moisture 
relationships can switch between spring and summer, 
highlighting the importance of accounting for plant 
phenology in wildfire danger assessments in temper-
ate environments. Understanding how landscape and 
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micrometeorological factors modulate cross-landscape 
differences in the timing of green-up may aid the devel-
opment of live fuel moisture models for assessing wildfire 
danger and behavior.

We hypothesize that cross-landscape fuel moisture 
variability is associated with specific landscape controls 
through careful experimental design, literature-based 
model selection, and interpretation based on our scien-
tific understanding of landscape processes. However, 
we acknowledge that inherent variability within natural 
landscapes means there may be unknown spatial controls 
not accounted for that may impact our findings. In par-
ticular, plots tended to be clustered around soil textures 
as soil properties are spatially disparate by nature. Future 
research could narrow in on specific landscape con-
trols of interest like soil texture to validate our hypoth-
eses. These sorts of experimental studies are critical for 
advancing our understanding of landscape processes and 
disturbances and provide valuable insights despite the 
spatial complexity (Davies and Gray 2015).

Implications
Landscape fuel moisture variability can create spa-
tial discontinuity in the availability of fuel that is in the 
correct state for ignition (surface fuels) and wildfire 
spread (live fuels), including the potential for spot-fires 
in extreme conditions, and vulnerability of the organic 
layer to smoldering (Finney et al 2021). Spatial heteroge-
neity in fuel moisture can therefore influence how a fire 
will propagate across the landscape. For example, the 
percolation threshold describes the point at which a fire 
will spread continuously throughout the landscape irre-
spective of landscape connectivity (Gardner et  al 1987). 
Knowing the magnitude of fuel moisture variability may 
allow for spatial pattern analyses of the role of fuel mois-
ture in landscape connectivity, as well as targeting fire 
prevention in areas where this threshold for continuous 
fire spread may be breached (Rahimi and Salman Mahini 
2018; Duane et  al 2021). Fuel moisture models should 
therefore have high spatial fidelity to capture cross-land-
scape fuel moisture variation and dynamics, which can 
then be integrated into fire behavior modeling systems 
(Dickman et al 2023).

Tailored fuel moisture models of Calluna-dominated 
landscapes that sit within systems that predict fire 
behavior during incidents may aid wildfire event deci-
sion-making for fire managers by informing resource 
deployment (particularly where locations may be vul-
nerable to smoldering) and identifying suppression 
opportunities. We suggest that by knowing the specific 
landscape characteristics of an area of interest, a look-
up tool could be applied to adjust fuel moisture esti-
mates to local conditions by land managers or fire and 

rescue services. For example, controlled burns in the 
UK are typically small-scale where accurate estimates 
of local fuel moisture variability may help to identify 
the best burn locations if seeking to reduce the risk of 
out-of-control fires or failed ignitions for land manag-
ers. Beyond this, the availability of digital landscape 
information (e.g., elevation models and soil maps) 
opens opportunities to enhance the spatial resolution 
of regional fuel moisture estimates to better reflect local 
conditions. Such downscaling has previously been used 
to account for the effect of topography on net radiation 
and aridity (Nyman et  al 2014) and has subsequently 
been developed to downscale regional weather obser-
vations for wildfire management (Nyman et  al 2015; 
Walsh et  al 2017). The recently developed Australian 
Fire Danger Rating System is the first to forecast wild-
fire danger at an improved spatial resolution of 1.5 × 1.5 
km (Matthews et al 2019), highlighting recent recogni-
tion of the need for operational wildfire danger fore-
casts at the local scale.

Conclusions
We have quantified the magnitude of cross-landscape 
fuel moisture variability and the extent to which this is 
driven by landscape scale and micrometeorological fac-
tors in temperate peatlands and heathlands, finding:

1. Within the landscape scale, variations in fuel mois-
ture content create spatial discontinuity in the availa-
bility of live fuels for wildfire spread and vulnerability 
of the organic layer to high-severity smoldering.

2. Within the landscape scale, fuel moisture variation is 
controlled by both landscape and micrometeorologi-
cal factors, though landscape factors show greater 
overall performance (beyond modifying local micro-
meteorology).

3. Accounting for within landscape–fuel moisture rela-
tionships directly will improve the accuracy of fuel 
moisture estimates because estimates derived solely 
from micrometeorological observations will exclude 
the underlying influence of landscape-scale controls.

4. Differences in soil texture, shrub canopy age, and 
slope aspect are hypothesized to be important within 
landscape scale controls.

5. Phenology is capable of switching within landscape-
scale fuel moisture variability between spring and 
summer.

Our work thus sets the scene for a new avenue of land-
scape-scale wildfire danger research to support regional-
scale predictions, recognizing that fire danger ratings and 
fire behavior models may require different levels of detail 
for the different functions they perform.
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