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ABSTRACT

Changes in atmospheric oxygen concentration over Earth history are commonly
related to the evolution of animals and plants. But there is no direct geochemical proxy
for Oz levels, meaning that estimations rely heavily on modeling approaches. The results
of such studies differ greatly, to the extent that today’s atmospheric mixing ratio of 21%
might be either the highest or lowest level during the past 200 m.y. Long term oxygen
sources, such as the burial in sediments of reduced carbon and sulfur species, are
calculated in models by representation of nutrient cycling and estimation of productivity,
or by isotope mass balance (IMBa technique in which burial rates are inferred in order
to match known isotope records. Studies utilizing these different techniques produce
conflicting estimates for paleoatmospherig ®ith nutrient-weathering models
estimating concentrations close to, or above, that of the present day, and IMB models
estimating low @, especially during the Mesozoic. Here we reassess the IMB technique
using the COPSE biogeochemical model. IMB modelling is confirmed to be highly

sensitive to assumed carbondtC, and when this input is defined following recent
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compilations, predicted Qs significantly higher and in reasonable agreement with that
of non-IMB techniques. We conclude that there is no model-based support for low
atmospheric oxygen concentrations during the past 200 m.y. High Mesaazsic O
consistent with wildfire records and the development of plant fire adaptions, but links
between @and mammal evolution appear more tenuous.
INTRODUCTION

Oxygen fuels the chemical reactions that take place in the mitochondria of
eukaryotic cells, and pQherefore places limits on the performance and survival of
animals. Thus, changes in atmospher@@ncentration over Earth history are commonly
seen as triggers for animal, and later for mammal, evolution (Lyons et al;, 2014
Falkowski et al., 2005). Ratios 0@ O, determine the efficiency of photosynthesis, and
variations in pQdramatically influence wildfire dynamics, leading to strong potential
links between p®and plant evolutionHe et al., 2012). But long-term variations in
oxygen are difficult to estimate: the continuous presence of fossilized charcoal in
sediments younger than 420 Ma indicates sufficient oxygen to sustain combustion (O
15% of the atmosphere, Belcher and McElwain, 2008), and the severity of fires in
hyperoxic environments suggests thath@s remained below ~30% during this period
(Jones and Chaloner, 19%elcher et al., 2010

Between these limits, calculating variations in atmospheric oxygen relies on
“forward’ biogeochemical models of long-term €burce-and-sink processes or the
interpretation of geochemical proxies (Fig. 1). Forward models can be divided into two
groups, depending on how they estimate the burial rate of reduced carbon and sulfur,

which are the principal sources of Qver geological time scales. These organically
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mediated fluxes can be either estimated from the input of material and nutrients via
weathering (Arvidson et al., 20;1Bergman et al., 20Q04#ansen and Wallman, 2003

shown in green in Fig. 1) or inferred by comparing geological carbon and sulfur isotope
records to the isotopic composition of modeled sediments (isotope mass balance [IMB];

Berner, 2009Falkowski et al., 2005; red in Fig).1
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Figure 1. Reconstructions for Mesozoic and Cenozoic atmospheric O, mixing ratio. A
Forward models of ©@sources and sinks (green lines) and isotope mass balance models
(red lines). B: Proxy inversion assuming relationships betweementration and

either fossil charcoal abundance (Glasspool and Scott, 2010), darpbosphorus

ratios in sediments (Algeo and Ingall, 2007), carbon isotope composition of plant resins

(Tappert et al., 2013), or combined estimates for sedimentation rate and abundance of
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organic carbon and pyrite in rock samples (Berner and Canfield, 1989). Also shown:
wildfire minimum and maximum (see text}—Triassic; 3-Jurassic; K-Cretaceous;

Pg—Paleogene; Ng-Neogene.

Estimates of @differ greatly between different forward models. Nutrient and
weathering models typically predict higher values, while IMB models predict law pO
during the Mesozoic, potentially in conflict with the evidence for widespread fires
(Belcher and McElwain, 2008). All models show general agreement for a gradual rise in
pO: during the Cretaceous, although they disagree on whether this was a rise from low O
toward present values, or a rise from present to superambient levels, followed by a
decline over the Cenozoic.

“Proxy inversiofi methods estimate atmospheric oxygen by reference to
geochemical data. Glasspool and Scott (2010) assumed a correlation between the
abundance of charcoal in mires and atmospheric oxygen, scaling to the present-day value,
and assumed a Permian-Carboniferopsn@ximum of 30%. Algeo and Ingall (2007)
related Grg:P (org—organic) ratios in organic-rich sediments to benthic redox conditions,
and therefore to global atmospherigl€vels, scaling to the fire window. THeock
abundancémethod of Berner and Canfield (1989) utilizes the carbon and sulfur contents
of ancient sediments as well as sedimentation rate to infer oxygen production rates,
linking this to pQ. Tappert et al. (2013) inferred p@®om measured plant resi*C and
CO; proxies, reasoning that pkast>C reflects the C@O; ratio of the growth
environment. This technique produces very low estimates and is subject to high

uncertainty in quantifying the plast3C response to global2@nd CQ variations.



81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

The level of disagreement in current constructions is extreme and is masked
to some degree by the scaling of many results to the fire window. This makes it difficult
to assess the role of oxygen in the evolution of plants and animals during the Mesozoic
and Cenozoic. Moreover, the forward models discussed here are commonly applied in
studies of Paleozoic and Precambrian oxygen shifts (Clapham and Karr|.20tsh
and Watson, 2004), with important implications for the evolution of animals and land
plants.

In this paper, we focus on the question of whether atmospheric oxygen
concentration over the past 200 m.y. has been generally below or above the present-day
value. We address this by exploring the isotope mass balance technique, which currently
produces the most reliable and widely cited evidence for low Mesozoic oxygen.
FORWARD MODELING OF PALEOATMOSPHERIC OXYGEN
CONCENTRATION

Forward models are based on the long-term carbon and sulfur cycles (e.g., Kump
and Garrels, 1986), as shown in Figure 2. These systems consider atmaspher
oceaiic carbon (A) and sulfur (S) and the much larger sedimentary reservoirs of oxidized
and reduced species. The crustal reservoirs can be split into young (y) and ancient (a)
sediments, with the assumption that the young reservoirs are smaller and constitute the
majority of interaction with the surface system. Thigpid recycling permits the
isotopic signature of the young reservoirs to change more quickly and has a buffering

effect when burial rates are calculated via isotope mass balance (Berner, 1987, 2009



Figure 2. Long-term carbon and sulfur

A Carbon cycle AC = -27%s

cycles. Carbon cycle consists of fluxes
between atmosphierand oceais carbon

(A), organic carbon (G), and carbonate (C).
Sulfur cycle represents oceasulfate (S),
buried pyrite (PYR), and gypsum (GYP).
Burial (B) moves carbon and sulfur from the
atmosphere and ocean to the crustal
reservoirs, and it is returned by weathering
(W) and degassing and metamorphism (D).
Subscript “'y” denotes young crustal
reservoirs, “a” denotes ancient crustal
reservoirs. Oxygen sources are shown in
blue, sinks are shown in red. Other

processes shown in black. Present-day

isotope ratio®**C ands**S are shown for
118  carbon and sulfur reservoirs respectively in per mil (%o0); AC andAS show the burial

119 fractionation effects for carbon and sulfur, respectively.

120

121 Oxygen sources are the burial (B) of photosynthetically derived carbon and of
122  pyrite sulfur (blue arrows in Fig. 2). Burial of these reduced species results in

123 oxygenation of the surface environment. The buried species are eventually uplifted and



124 weathered (W) or are returned to the surface via metamorphism and degassing (D), which

125 represent oxygen sinks (red in Fig. 2). The source-sink balance far O

126 "d—otz = B(G) - W(Gy) — W(G,) — D(G,) + 2[B(PYR) — W(PYRy) —
127 W(PYR,) — D(PYR], (1)

128 where G is organic carbon and PYR is buried pyrite.

129 Models calculate these fluxes, informed by internal parameters such as

130 temperature, rates of erosion and degassing, rock exposure, and biological processes

131 (Berner, 2006Bergman et al., 2004). Burial, weathering, and degassing of the oxidized
132 forms of carbon and sulfur (black arrows in Fig. 2) do not impact oxygen concentration
133 directly but do affect the size and isotopic composition of the surface reservoirs (A, S), so
134 cannot be ignored.

135 Isotope MassBalance

136 Organic carbon and pyrite sulfur are isotopically lighter than thed®@® SQ

137 they are derived from, due to kinetic selection during photosynthesis and sulfate

138 reduction. The canonical isotope ratios for the present-day system (Hayes et al., 1999) are
139 shown in Figure 2, alongside the fractionation effag@s(carbon) andS (sulfur). These

140 isotopic compositions and fractionation effects have changed over Earth history. For

141 example, increasing the burial rate of organic, isotopically depleted carbon would act to
142 increase the isotope ra6°C in the parent surface reservoir A

143 Assuming that buried carbonates and sulfates reflect ancienioteropc

144  composition, the geological*C and3®*S records can be used to back-calculate the

145 required rate of burial of organic carbon and pyrite sulfur and therefore the rate of oxygen

146 production (Berner, 1987). This requires knowledge of the input fluxes via weathering
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and degassing (W, D), the isotopic composition of the crustal reservoirs, and the
fractionation effectaC andAS. The isotope mass balance equations consider isotopic
inputs and outputs and are rearranged to calculate burial rates. The mass balance for the
carbon system is shown below, and the sulfur system follows the same structure. See
Berner (1987) and Berner (2001) for detailed descriptions. &{&)ds the isotopic
composition of reservoir X:

B(G) = ﬁ{[sm) — 8(G,)|W(Gy,) + [8(4) — 8(G)IIW (G,) + D(G)] +

[8(A) — 8(CIW(Cy) + [8(4) — 8(CHIIW (Ca) + D(C)I} - ()

The GEOCARBSULF model (Berner, 2006, 2088y. 1A) combines the isotope
mass balance technique with calculations for biogeochemical carbon and sulfur fluxes,
and is generally considered the currdmst-guessatmospheric @prediction. Error
analysis of the GEOCARBSULF model (Royer et al., 2014) plots model predictions for
variation in all input parameters and robustly predicts low Mesozpitl@vever, this
study is hampered by high model failure rate (the model crashes when some inputs are
changed significantly from their default values), allowing only minimal variation of the
513C input B(A) in Equation 2], far from the uncertainty in global records.
TheIMB-COPSE M odel

We re-evaluate the oxygen predictions via isotope mass using the revised COPSE
model (Mills et al., 2014). COPSE is a derivative of the GEOCARB models and uses
many of the same calculations, but it differs from GEOCARBSULF in several ways that
make it potentially more useful for evaluating @edictions: the model is solved
numerically using an implicit variable order method (Shampine and Reichelt, 1997),

which greatly reduces model failure rate and allows testing of diffété&dtinputs. The



170 model also integrates recent research on the global rate.adég@ssing and the

171 weathering of volcanic rocks (Van Der Meer et al., 204ls et al., 2014), which has
172 not previoushybeen applied to oxygen calculation.

173 The standard COPSE model includes nutrient cycles in order to estimate

174  productivity and calculate the fluxes of organic carbon and pyrite sulfur burial. In this
175 exploration (MB-COPSE), the nutrient cycles are removed and the productivity and
176 burial calculations are replaced with the standard isotope mass balance equations (Berner,
177 2001; Equation 2), following their incorporation into GEOCARBSULF (Berner, 2006).
178 This includes the addition of rapid recycling. See the GSA Data Repdsitofull

179 model description.

180 MODEL INPUTSAND RESULTS

181 Initially the IMB-COPSE model is run using the GEOCARBSWLEC ands3*S
182 inputs (red dashed line in Fig. 3A). Despite the differences in model weathering and
183 degassing processes, the IMB-COPSE model producpee@ictions that are strikingl
184 similar to those of GEOCARBSULF (black and red lines in Fig. 3B). This includes a
185 prolonged period of low atmospherie @uring the Jurassic and Early Cretaceous.

186 We explore model sensitivity to assun@ééC ands®*S records by removing the
187 GEOCARBSULF inputs and replacing them with values from recent literature

188 compilations. Current records for Phanero#diS (Algeo et al., 2015) do not differ

189 greatly from the GEOCARBSULF inputs, and their substitution has little impact on
190 model predictions (see the Data Repository). Recent compilations of carbbate

191 however, show notable differences from the curves used in GEOCARBSULF.
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Thes13C compilation of Saltzman and Thomas (2012; denoted GTS2012) is
shown in blue in Figure 3A. The solid line shows the moving average, and dashed lines
show +X over 5 m.y. bins. The Mesozoic recoraisigher resolution than the
GEOCARBSULF input but does not show substantial base-level differences. The
GTS2012 curve incorporates recent Cenozoic data from benthic foraminifera (Cramer et
al., 2009), which agrees with the bulk recordBt in pelagic carbonates (Katz et al.,
2005) in giving a present-day océab'>C value close to 0%o, Whereas the
GEOCARBSULF curve has a preseiats value closer to 2%o. This value is extremely
important in isotope mass balance modeling as it sets the relative state of the system as
we explore ancient time periods. During the Jurassic period, the GEOCARBSULF curve
assumes a global oce&HC signature that is isotopically lighter tharpresent,
potentially indicative of lower organic carbon burial and less oxygen production. The
GTS2012 curve, however, shows a generally heavier signal than at present.

These differences in assumed o¢ea@h’C translate into large differences in
model Q predictions, which tend to follow this input qualitatively. Under the GTS2012
input, the average predicted Encentration (blue in Fig. 3B) remains at or above
present values during the past 200 m.y., resolving the conflict with nutrient- and
weathering-based models and with the wildfire minimum. Note that ilpeedictions
for the +I 81°C inputs cross each other due to the present-dayptraint. See the
Data Repository for further model uncertainty estimates, including constraints on the

sulfur cycle.
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Figure 3. Results of isotope mass
balance (IMB)-COPSE modd. A
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moving average, and dashed lines
show +1o) or GEOCARBSULF
model (Berner, 2009; red). B:
Oxygen mixing ratios (%) predicted
by IMB-COPSE model giver3C
input from GTS2012 (blue) or
GEOCARBSULF (black dashed),
compared to GEOCARBSULFO
output (red. Estimates from Figure

1 shown in gray, with fire window in

orange. For full model output see Data Repository (see footnote-djrdssic; K-

Cretaceous; RPgPaleogene; NgNeogene.

DISCUSSION

Examination of IMB modeling confirms that the predicted rate of burial of

organic carbon (the largest source @f 9 heavily dependent on the assumed carbon
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isotope record and much less dependent on other model processes, meaning that
assumptions about the variation in odea’°C are critical in determining pO

Compiling the global record of average whole-oc&48 is difficult, as
differences exist across species, depth, and temperature (Saltzman and Thomas, 2012
Cramer et al., 2009). The paleogeographic source of information at different times adds
further uncertainty: in sediments older than the Early Cretaceous the majority of records
are sourced from epeiric seas rather than open-ocean margins or the deep ocean. A
variety of studies have shown that ancient epeiric-sea water masses could develop
isotopic signatures distinct from those of the open ocean for a number of isotope systems
including carbon (Coulson et al., 20 HFanchuk et al., 2008lewton et al., 2011

These sources of uncertainty and variability lead to significant uncertainty in the
overall curve, and crucially, in whether the present-day value is lower or higher than
average values over the Mesozoic and Cenozoic. Current GEOCARBSULF model
predictions of low Mesozoic pdely on the assumption that modern oéedH’C values
are higher than those during the Mesozoic, which is not shown in recent records based on
either bulk-rock (Katz et al., 2005) or single-organism (Cramer et al., 2009) compilations.
We therefore conclude that there is no model-based support for low Mesozoic pO
concentrations.

Taking our results together with the forward modeling approaches that calculate
oxygen production via weathering and nutrient systems (Fig. 1), we argue forzhigh O
during the Mesozoic and Cenozoic, with a rise to above-modern oxygen concentrations
during the Cretaceous. This view is compatible with the limits of combustion (Belcher

and McElwain, 2008). Low-oxygen predictions are not a necessary consequence of
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isotope mass balance modeling, while estimations based ét*@heomposition of plant
material (Tappert et al., 2013) are extremely difficult to validate due to the high
variability of measured values and absence of controlled growth experiments in different
C0,:02 ratios.

Linking variations in oxygen concentration to animal evolution is speculative, and
it is difficult to separate ecological and climatic drivers (Smith et al., ;20tHpham and
Karr, 2012). Proxies for £based on plant flammability are useful, but must be expanded
to consider linkages between pénd fire-adapted trait selection (e.g., He et al., 2012,
2015 Lamont and Downes, 2011). Reconstructing atmospheric oxygen via modeling
studies depends greatly on the ability to accurately compile average, wholestcean
for the ancient past, whether this record is used to directly drive the model (IMB) or as a
means of comparison to model outputs. It is clear that modelers and paleontologists
should seek to work together if we are to better explore the links between oxygen and
evolution.
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Mills_2016_02.xIsx: Datafile of oxygen reconstructions from the IMB-COPSE model.

APPENDI X
APPENDIX 1: ALTERATIONSTO PREVIOUSLY PUBLISHED MODEL
The COPSE and GEOCARB models

The original COPSE model (Bergman et al., 2004) is a long term biogeochemical
box model, based on the GEOCARB models (Berner 1991, 1994, Berner and Kothavala,
2001). It calculates fluxes between the atmosphere/ocean and sedimentary reservoirs of
oxidised and reduced carbon and sulphur to estimate changes,i@CDd ocean
sulphate over the Phanerozoic. Since publication of COPSE, GEOCARB has been
extended to include calculations for the sulphur cycle and oxygen (GEOCARBSULF). In
Mills et al. (2014), COPSE was updated to consider the weatherable area of different rock
types, and to investigate alternative reconstructions for volcanic degassing rates (Van Der
Meer et al., 2014). The model predictions were compared to variation in seawater
87Srpegr.

The critical difference between COPSE and GEOCARBSULF is the method used
to estimate the burial rates of organic carbon and pyrite sulphur, which are the long term
sources of oxygen. COPSE uses integrated cycles of limiting nutrients P and N
(following Lenton and Watson 2000) to estimate these fluxes based on other model
parameters, such as nutrient delivery via weathering. GEOCARBSULF uses an isotope

mass balance technique (IMB: Berner 1987, 2001) which infers the burial rates from
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416 known changes in isotope ratios *3C and §3*S, and does not require the calculation of

417 nutrient fluxes. Whist model predictions for €@ver the Phanerozoic are broadly

418 similar, predictions for variation inare substantially different.

419

420 Model used in thiswork

421 This paper uses the latest version of the COPSE biogeochemical model (Mills et
422 al., 2014), and adds to this a routine for calculating the burial rates of organic carbon and
423  pyrite sulphur via isotope mass balance, mirroring the functionality of the

424 GEOCARBSULF model (Berner, 2006; 2009). The resulting model is very similar to

425 GEOCARBSULF, but differences remain in the assumed rate of volcanic degassing, and
426 the weatherable area of volcanic rocks, as well as more minor quantitative differences in
427 the calculations for weathering fluxes.

428 In this paper we wish to test the oxygen predictions from the isotope mass balance
429 system, particularly witregard to the input of §1°C data, which shows large uncertainty.

430 In theory, this test can be carried out using the GEOCARBSULF model, however recent
431  work has shown that the computational algorithm used to solve the model fails when §13C

432 inputs are varied only slightly from the model baseline (Royer et al., 2014). The COPSE
433 algorithm uses a variable time-step method and is therefore suited to testing wide

434  differences in input parameters. Thus we adapt the COPSE model to test the isotope mass
435 Dbalance method by removing the nutrient system and replacing with the IMB equations.
436 This has the additional benefit of testing whether the differences in the COPSE

437 formulations for degassing and weathering have much impact on the model outputs under

438 isotope mass balaac
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To summarize the results of this exercise:

e Replacing the nutrient system in COPSE with the exact isotope mass
balance system from GEOCARBSULF (including standard inputs for
313C and §4S) results in oxygen predictions very similar to
GEOCARBSULF. Showing that{predictions are much more dependent

on the assumed isotope record than other model processes.

e Replacing the standard §'°C input compilation with a more recent record
(Saltzman and Thomas, 2012) results in major revision of the O
predictions, with p@> 0.2atm for the whole model timeframe (200-
OMa).
Rapid recycling
In order to add the isotope mass balance system to COPSE, the model must be
modified to include ‘rapid recycling’ of sedimentary carbon and sulphur. Under this
method, it is assumed that geologically young sedimentary rocks constitute the majority
of interaction with the surface system, allowing the isotopic signature of buried material
to be more quickly recycled to the atmosphere and oceans. This technique has been
included in all isotope mass balance approaches (Berner 1987; 2006; 2009; Royer et al.,
2014).
The method involves splitting the sedimentary reservoirs for organic carbon,
carbonates, pyrite and gypsum sulphur into ‘young’ and ‘ancient’ boxes. The young
boxes are smaller and have higher weathering rates, the ancient boxes are much larger
and have lower weathering rates (see ms figure 2). The relative size of the young and

ancient reservoirs, as well as the relative weathering contributions are taken directly from
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GEOCARBSULF, and are listed below with the other model parameters. The carbon and
sulphur cycle schematic from the attached manuscript, which details the flux names, is

reproduced here (Al) for convenience.

A: Carbon cycle AB = -27%o B: Sulphur cycle AS = -35%o

Figure Al. Long term carbon and sulphur cycles. The carbon cycle consists of fluxes
between atmosphere and ocean carbon (A), organic carbon (G) and carbonate (C). The
sulphur cycle represents ocean sulphate (S), buried reduced pyrite (PYR) and oxidised
gypsum (GYP). Burial (B) moves carbon and sulphur from the atmosphere and ocean to
the crustal reservoirs, and it is returned by weathering (W) and degassing/metamorphism
(D). Subscript (y) denotes young crustal reservoirs, (a) denotes ancient crustal
reservoirs. Oxygen sources are shown in blue, sinks are shown in red. Present day
isotope ratios 6*°C and 5**S are shown for carbon and sulphur reservoirs respectively in
per mil (%), AB and AS show the burial fractionation effects for carbon and sulphur

respectively.
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| sotope mass balance equationsfor burial fluxes

With rapid recycling added to the COPSE model, and the nutrient system
removed completely, the equations representing organic carbon burial and pyrite sulphur
burial are copied exactly from GEOCARBSULF, the code for which was kindly sent by
R. A. Berner. The mathematical derivation is published in Berner (1987) and begins with
the assumption of input-output parity f6€ and*3*C atoms (and*S and®?S for sulphur).
For Carbon:
Input X §(Input) = Output X §(Output)

1)
W(G,)8(Gy) + W(G,)8(G,) + D(G,)8(G,) + W(C,)8(C,) + W(C)S(C,) +
D(C)6(C) = B(G)(6(A) — AB) + B(C)6(A)

2)
Rearranging gives:

AB x B(G) = (6(A) — 6(Gy)) W(Gy) + (6(4) — 6(G,))(W(G,) + D(GL)) +

(8 = 8CNIW(Cy) + (8(A) = 8(Ca)(W(CQ) + D(C))

3)
Where 6(X) is the isotopic composition of reservoir X, W denotes weathering, D denotes
degassing and B denotes burial. AB and AS are the fractionation effects for burial of
carbon and sulphur respectively. This equation is mirrored for the sulphur cycle.
APPENDIX 2: FULL MODEL DESCRIPTION

The full model equations are detailed below. Aside from the addition of rapid

recycling and isotope mass balance, and the removal of the nutrient system, they follow
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exactly the model from Mills et al., (2014). The flux names from the manuscript are
simplified here for convenience:

w(C,) = carbw,, W(C,) = carbw,, W(G,) = oxidw,, W(G,) = oxidwy,

D(C) = ccdeg, D(G) = ocdeg, B(G) = ocb, B(C) = mcch

W(GYPy) = gypw,,, W(GYP,) = gypw,, W(PYRy) = pyrw,,, W(PYR,) = pyrwg,
D(GYP) = gypdeg, D(PYR) = pyrdeg, B(GYP) = mgsb, B(PYR) = mpsb

Reservoir calculations:

Atmosphere/ocean carbon:

dA

i ccdeg + carbwy, + carbw, + oxidw,, + oxidw, + ocdeg

—mccb — och — sfw
(4)

Ocean sulphate:

ds
¢ = PyTWy +pyrwe + pyrdeg + gypwy+ gypw, + gypdeg
—mpsb — mgsb

()

Buried organic C (young): % = ocb — oxidw, — Fgy,
(6)

Buried organic C (ancient):% = Fgyq — 0xidw, — ocdeg
(7)

Buried carbonate C (younggc—ty = mcchb — carbw,, — Fgyq

(8)
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Buried carbonate C (ancien‘-fft.£ = F¢yq — carbw, — ccdeg

(9)

dPYRy,

Buried pyrite S (young): o

= mpsb — pyrw,, — FPYRya

(10)

dPYR,
T Fpyrya — DYTWq — pyrdeg

Buried pyrite S (ancient):

(11)
Buried gypsum S (young): dG;th = mgsb — gypwy — Fgypya
(12)

dGYP,

Buried gypsum S (ancient): = Foypya — gYPWq — gypdeg
(13)
| sotope reservoir calculations:

Atmosphere/ocean carbon:

d(Ax5(4))
dt

= ccdeg X 6(Cy) + carbw,, X S(Cy) + carbw, X §(Cy) + oxidw,, X
S(Gy) + oxidw, X §(G,) + ocdeg %X 6(G,) — ocb X (§(A) — AB) — mcchb X §(A) —
sfw x §(A)

(14)

Ocean sulphate:

d(Sx6(S))

= = gypdeg x §(GYR,) + gypwy X 8(GYP,) + gypw, X 8(GYPy) + pyrwy, X

§(PYR,) + pyrw, X §(PYR,) + pyrdeg x §(PYR,) — mpsb X (6(S) — AS) —

mgsb X 6(S)

(15)
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d(Gyx58(Gy))

d(Ga*x8(Gg))

d(Cyx8(Cy))

d(Cax8(Cq))

Buried organic C (young):

——2= = och X (§(A) — AB) — oxidw, X §(Gy) — Fgya X 8(Gy)

(16)

Buried organic C (ancient):

” = Fgya X 6(Gy) — oxidw, X 6(G,) — ocdeg %X 6(G,)

(17)

Buried carbonate C (young):

” = mccb X §(A) — carbw,, X 6(Cy) — Feyq X 6(Cy)

(18)

Buried carbonate C (ancient):

= Feyg X 8(Cy) — carbw, x 8(C,) — ccdeg % §(C,)

(19)
Buried pyrite S (young):

d(PYRyx8(PYRy))

— = mpsb x (§(S) — AS) — pyrwy, X §(PYR,) — Fpyryq X 8(PYR,)

(20)
Buried pyrite S (ancient):

d(PYRgx8(PYRY))

— = Fpyrya X 6(PYR,) — pyrw, x §(PYR,) — pyrdeg x §(PYR,)

(21)
Buried gypsum S (young):

d(GYPyx8(GYPy))

— = mgsb x 5(S) — gypwy, X 8§(GYP,) — Feypyq % 6(GYP,)

(22)



564 Buried gypsum S (ancient):

d(GYPgx8(GYPR))

565 ”

= Fgypya X 6(GYP,) — gypw, X §(GYPR,) — gypdeg x 8§(GYF,)
566 (23)

567 List of fluxes

568 Temperature dependence of basalt weathering:

569  frpes = €%061T=To){1 + 0.038(T — T,)}*5

570 (24)

571 Temperature dependence of granite weathering:

572 frgran = €®072T~T0){1 4 0.038(T — T;)}*°"

573 (25)

574 Temperature dependence of carbonate weathering:
575 gr= 1+0.087(T —Tp)

576 (26)

577 Pre-plant silicate weathering: foreptant = fr \/WOZ

578 (27)

2RCO, )0-4‘

579 Plant-assisted silicate weathering:f,i4n: = fr (1+RCO
2

580 (28)
581 Pre-plant carbonate weathering:  g,repiant = gr - RCO;

582  (29)

2RCO, )0-4

583 Plant-assisted carbonate weatheriggyn: = gr - (1+RCO
2

584  (30)
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Climate forcing for silicates:

fcoz = foreptant(1 — min(VEG - W)) + fpiane * min(VEG - W)

(31)

fcozgranand tozbasresult from the do2 function with plant-weathering feedbacks using
frgranand froasrespectively.

Climate forcing for carbonates:

9coz = Gprepiant(1 = min(VEG - W)) + gpian: - min(VEG - W)

(32)

_ _ 2
Vegetation feedbackVEG = 2 - E - — c02Pm—10) -(1 - ((T TO)) )
(183.6+C0,ppm—10) T

(1-5 - O'S(ROZ)) ' (kfire—1+max(586I.Z(l;ze(atm)—122.102 0))
(33)

Evolution of plants: pevol = (kprepiant + (1 — Kprepiant) * W - VEG)

(34)

Basalt weathering: basw = %basg - ksitw * fcozpas - PG - pevol - BA

(35)

Granite weathering:

granw = (1 —%bas,) * ksyw * fcozgran - PG - U - pevol - GA

(36)

Silicate weathering: silw = basw + granw

(37)

Carbonate weathering (young): carbwy, = kegrpwy * gcoz * PG - U - pevol - LAC,

(38)
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Carbonate weathering (ancient): carbw, = K.qrpwa * 9coz - PG - U - pevol - LAC,,
(39)

Oxidative weathering (young):  oxidwy, = koyiawy U - /RO,

(40)

Oxidative weathering (ancient):  oxidwy, = Kyxigwa * U * /RO,

(41)
Transfer from gto Ca Fgyq = carbw, — ccdeg
(42)
Transfer from Gto Ga Fgyq = 0xidw, — ocdeg
(43)

Marine carbonate carbon burial: mcch = silw + carbw

(44)

Seafloor weathering is revised to include direct temperature dependence as with
terrestrial basalt weathering. This assumes a direct relationship between surface
temperature change and seafloor temperatures.

Seafloor weathering: sfw = kgpy, - D - e%061(T~T0)

(45)

In COPSE, sulphur degassing is assumed to have the same controls as sulphur

weathering, therefore the degassing terms are accounted for by larger weathering terms:

Pyrite sulphur weathering (young)pyrwy, = kyymyy - U - =2 /RO,

PYRyq

(46)
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. ) . PYRq [HA
Pyrite sulphur weathering (ancientpyrw, = kyypyq - U - PYRqo k0,

(47)

GYPy  carbw

Gypsum sulphur weathering (youngypw = kgypy - U

GYPyo carbwy

(48)

GYP, carbw
GYPyo carbwy

Gypsum sulphur weathering (anciegtypw = kg, * U -

(49)

Transfer from GYRto GYPx Foypya = gypwe — gypdeg
(50)

Transfer from PYRto PYRx Fpyrya = DYTW, — pyrdeg
(51)

Gypsum sulphur burial: mgsb = Kmgsp -;—0-%
(52)

Organic carbon degassing: ocdeg = Kocgeg (G%) D
(53)

Carbonate carbon degassing: ccdeg = kecgeg (Cio) DB
(54)

Marine carbonate carbon burial: mccbh = silw + carbw

(55)

Total organic carbon burial:



648 och = é (carbwy (5(A) — 5(Cy)) + carbwa(S(A) — S(Ca)) + oxidw,, (S(A) —

649 6(G,)) + oxidwe(8(4) — 8(G2)) + cedeg(8(4) — 8(C.)) + ocdeg(8(4) - 6(Gn)) )

650 (56)

651 Total pyrite sulphur burial:

652 pyrb =~ (gypwy (6(5) — 5(GYP,)) + gypwa(8(S) — 8(GYR)) + pyrw, (8() -
653  8(PYR,)) + pyrwa(8(S) — 8(PYR,)) + gypdeg(8(S) — 6(GYR,)) +

654 pyrdeg(5(S) - 6(PYRa))>

655 (57)

656 Other calculations:

657 Relative atmospheric© RO, =

O—O+k02
658 (58)
659 where kg2 = 3.762
660 Solar forcing: S = 1+0.S;8(£)
661 (59) where &= 1368Wn?, 1=4.55x10° years.
662 Present day values: Sour ce:
663 Marine organic carbon burial: mic=4.5x13% mol Cyr! COPSE
664  Pyrite sulphur burial: os=5.3x13mol Syrr  COPSE
665 Gypsum sulphur burial: ns=1x102 mol Syt COPSE
666 Silicate weathering ki = 4.9x13?mol C yr!  for steady

667 state
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Seafloor weathering:

(2014)

Oxidative weathering (young)

Oxidative weathering (ancient)
COPSE

Cabonate weathering (young)
COPSE

Carbonate weathering (ancient)
COPSE

Pyrite sulphur weathering (young):
COPSE

Pyrite sulphur weathering (ancient):
COPSE

Gypsum sulphur weathering (young)
COPSE

Gypsum sulphur weathering (ancient)
COPSE

Organic carbon degassing:
COPSE

Carbonate carbon degassing:
COPSE

Atmosphere and ocean @O

COPSE

o = 1.75x10%mol C yr*  Mills et al.
Koxidwy=7x10"* mol C yr* COPSE
Koxidwa="7.75x10 mol C yrt
Kearbwy=1.8x103 mol C yr?
Kearbwy=2x10"2 mol C yr?

oyk=2.36x10 mol S yrt

oyk=2.9x10* mal S yrt

oy =7.5x10* mol S yrt

aypky=2.5x10* mol S yrt

ocdég=1.25x16°mol C yr!

ccddg=6.65x16°mol C yr!

A0=3.193x142 mol
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Ocean sulphate:

COPSE

Atmosphere and ocean oxygen:

COPSE

Buried organic carbon:
COPSE

Buried carbonate carbon:
COPSE

Buried pyrite sulphur:
COPSE

Buried gypsum sulphur:
COPSE

Forcings:

Solar forcing:

Relative global C@degassing:
Relative uplift rate:

Evolution of land plants:

Weathering effect of plant evolution:

Carbonate burial depth:
Relative basaltic area:
Relative total land area:

Relative carbonate land area:

oP4x10° mol

0=0.7x13° mol

¢31.25x16* mol

€B.6x101 mol

PY#R1.8x13mol

GYPy=2x1CG° mol

Attributes:

So
1+0.38(7)

where 8= 1368Wn¥, 1=4.55x10° years.
D = 1 for present day

U = 1 for present day

E = 1 for present day

W =1 for present day

B =1 for present day

BA =1 for present day

LAre = 1 for present day

LAG 1 for present day
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Relative granite area: GA = LALAC — BAcont
where BAont is the total basaltic area on continents (i.e. total basaltic area minus island
arc and ocean island contributions) and LA and LAC are the total land area and carbonate
land area respectively, calculated by scaling the relative areas to the present day areas.
Paleogeographical runoff effect: PG = 1 for present day
Starting conditions

The model reservoir of ancient carbonateg i<y far the largest store of carbon,
therefore its assumed isotopic composition at the start of the model run will influence the
relative carbon burial rates for this time. This parameter is set so that organic C burial
rates and oxygen concentration return to present day values at the end of the run (OMa).
This requiress (Cygrqre) = 1.16 for the GEOCARB 8'°Cinput, and5 (Cps¢qre) = —0.56
for the GTS2012 input.
Model output

Figure A2 shows IMB-COPSE model output for 3 combinations of input parameters:

1) 8'3C ands®**Sinputs follow GEOCARBSULF. Shown in green.

2) 8'3C input follows GEOCARBSULF§**Sinputs follow Algeo et al., (2015).
Shown in orange.

3) sCinput follows GTS2012 (Saltzman and Thomas, 20d¥% inputs follow

Algeo et al., (2015). Shown in red.
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Figure A2. IMB-COP SE model output for different isotope input scenarios. Relative

atmospheric C®concentration plotted against compilation of Park and Royer (2011).

Under the GEOCARBSULF inputs, the IMB-COPSE model predicts very similar
variations in atmospheric oxygen to the original GEOCARBSULF model (Berner, 2009;
see manuscript). Wheii*S input is altered to follow Algeo et al., (2015), oxygen

variation is only slightly affected, owing to the minor alteration to the input (around one
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5t of the range), and to the significantly smaller fluxes of oxygen associated with the
sulphur system when compared to carbon. Whedfiinput parameter is also altered,
predicted oxygen concentration is significantly changed, and is higher over the model
timeframe. This stems from the assumption that Mesozoic 3C was higher than present,

equating to greater organic carbon burial in this model variant.

APPENDIX 3: ADDITIONAL MODEL EXPERIMENTS
Sensitivity of O2 predictions to input parameters other than carbonate $°C

In the manuscript we show extreme sensitivity of modelled oxygen predictions to
carbonat 51°C inputs. In figure A3 we test additional uncertainty by including error
estimates for other model processes. The grey area shows the extent of the range of
model predictions when run with +1c variation in carbonate 5'°C, but also with variation
between the minimum and maximum estimates for the rate of volcanidégassing
and the global area of weatherable volcanic rocks. This mirrors the sensitivity window
shown in Mills et al., (2014). The effects on atmospheric oxygen predictions are minimal
when compared to the variation assumed in carb@#Zealone (blue dashed lines). It
has been shown (Royer et al., 2014) that multi-parameter error analysis on all input
parameters (~70 for GEOCARBSULF) can result in similar uncertainty ranges for model
O predictions as calculated here by varying only3i€ input. The grey error window
we show could be extended using this method (although many of these assumed error
windows are themselves arbitraryhe degassing rate and carboréaf€ curve used in
this modelling are significantly outside the error range used by Royer et al., (2014)), but

the median predictions are not altered by such analyses.
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Figure A3. Model error window (grey) when subject to max/min variation in inputs for
carbonat&'C, volcanic CQ degassing rate and weatherable area of volcanic rocks.
See Mills et al., (2014) for details of these processes. Compared to model error window

under+/s in carbonaté®C input (blue dashed lines).

Model sensitivity to carbonatereservoir variations.

Our model assumes an increase in the degassing rate of carbonates at ~140Ma,
aiming to represent the subduction of deep ocean carbonate deposits after the evolution of
calcareous plankton (burial depth forcing B above, following from GEOCARB
modelling). However, carbonate subduction may be more dependent on longer term basin
dynamics and may therefore produce a destabilizing effect on the carbon cycle (Edmond
and Huh, 2003). In figure A4 we replace the B forcing with a new flux from the young
carbonate reservoir to the atmosphere/ocean. This represents tectonic control of carbonate
subduction and follows Edmond and Huh (2003; panel A). As discussed by these authors,

this flux can have a considerable impact on model @@&dictions. This follows from the
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idea that the modern day steady state does not include some significant past processes.
The impact on our oxygen predictions is however relatively small: the increase in carbon
fluxes only represents around 10% of the total gross throughput, and therefore does not

greatly alter the mass balance calculation p(s8e manuscript).
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Figure A4. Model configured with additional carbonate subduction flux from young

carbonates to atmosphere/ocean (red). Compared to original model (black).
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Model sensitivity to pyrite burial constraints.

The quantity fyr represents pyrite burial as a fraction of total sulphur burial. In
GEOCARB and COPSE modelling,fis around 0.3-0.4 at the present day. It has
however been suggested, based on direct estimation of the sulphate burial rate, that f
may have been as high as 0.9 and stable at this fraction for the whole Phanerozoic
(Halevy et al., 2012). To close the isotope mass balance under this constraint requires a
fixed time-evolution of the isotopic composition of sulphate inputs (figure A5, panel A),
although this is not supported by available data on the composition of sulphur in coals
(Canfield, 2013). In figte A5 we run the model with an imposed §3*S of sulphate inputs,
and an increased rate of pyrite burial at present day (Halevy et al., 2012). Variation in
oxygen predictions are again small. This is because the rate of oxygen production from
pyrite burial is still much smaller than via organic carbon burial (around 20%), and also
because the higher and more stable rate of pyrite burial in the altered model acts to reduce

the overall variation in oxygen production rates.
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Figure A5. Model configured with higr rate of pyrite burial and imposed 6>*S value for

sulphate inputs (purple). Compared to original model (black).
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