56 research outputs found

    How Does Spatial Study Design Influence Density Estimates from Spatial Capture-Recapture Models?

    Get PDF
    When estimating population density from data collected on non-invasive detector arrays, recently developed spatial capture-recapture (SCR) models present an advance over non-spatial models by accounting for individual movement. While these models should be more robust to changes in trapping designs, they have not been well tested. Here we investigate how the spatial arrangement and size of the trapping array influence parameter estimates for SCR models. We analysed black bear data collected with 123 hair snares with an SCR model accounting for differences in detection and movement between sexes and across the trapping occasions. To see how the size of the trap array and trap dispersion influence parameter estimates, we repeated analysis for data from subsets of traps: 50% chosen at random, 50% in the centre of the array and 20% in the South of the array. Additionally, we simulated and analysed data under a suite of trap designs and home range sizes. In the black bear study, we found that results were similar across trap arrays, except when only 20% of the array was used. Black bear density was approximately 10 individuals per 100 km2. Our simulation study showed that SCR models performed well as long as the extent of the trap array was similar to or larger than the extent of individual movement during the study period, and movement was at least half the distance between traps. SCR models performed well across a range of spatial trap setups and animal movements. Contrary to non-spatial capture-recapture models, they do not require the trapping grid to cover an area several times the average home range of the studied species. This renders SCR models more appropriate for the study of wide-ranging mammals and more flexible to design studies targeting multiple species

    Despotism and Risk of Infanticide Influence Grizzly Bear Den-Site Selection

    Get PDF
    Given documented social dominance and intraspecific predation in bear populations, the ideal despotic distribution model and sex hypothesis of sexual segregation predict adult female grizzly bears (Ursus arctos) will avoid areas occupied by adult males to reduce risk of infanticide. Under ideal despotic distribution, juveniles should similarly avoid adult males to reduce predation risk. Den-site selection and use is an important component of grizzly bear ecology and may be influenced by multiple factors, including risk from conspecifics. To test the role of predation risk and the sex hypothesis of sexual segregation, we compared adult female (n = 142), adult male (n = 36), and juvenile (n = 35) den locations in Denali National Park and Preserve, Alaska, USA. We measured elevation, aspect, slope, and dominant land cover for each den site, and used maximum entropy modeling to determine which variables best predicted den sites. We identified the global model as the best-fitting model for adult female (area under curve (AUC) = 0.926) and elevation as the best predictive variable for adult male (AUC = 0.880) den sites. The model containing land cover and elevation best-predicted juvenile (AUC = 0.841) den sites. Adult females spatially segregated from adult males, with dens characterized by higher elevations ( = 1,412 m, SE = 52) and steeper slopes ( = 21.9°, SE = 1.1) than adult male (elevation:  = 1,209 m, SE = 76; slope:  = 15.6°, SE = 1.9) den sites. Juveniles used a broad range of landscape attributes but did not avoid adult male denning areas. Observed spatial segregation by adult females supports the sex hypothesis of sexual segregation and we suggest is a mechanism to reduce risk of infanticide. Den site selection of adult males is likely related to distribution of food resources during spring

    Environmental factors shaping the distribution of common wintering waterbirds in a lake ecosystem with developed shoreline

    Get PDF
    In this study, we tested whether the spatial distribution of waterbirds is influenced by shoreline urbanization or other habitat characteristics. We conducted monthly censuses along shoreline sections of a continental lake (Lake Balaton, Hungary) to assess the abundance of 11 common species that use this lake as a feeding and staging area during migration and winter. We estimated the degree of urbanization of the same shoreline sections and also measured other habitat characteristics (water depth, extent of reed cover, biomass of zebra mussels, distances to waste dumps and to other wetlands). We applied linear models and model averaging to identify habitat variables with high relative importance for predicting bird distributions. Bird abundance and urbanization were strongly related only in one species. Other habitat variables exhibited stronger relationships with bird distribution: (1) diving ducks and coots preferred shoreline sections with high zebra mussel biomass, (2) gulls preferred sites close to waste dumps, and (3) the abundances of several species were higher on shoreline sections close to other wetlands. Our findings suggest that the distribution of waterbirds on Lake Balaton is largely independent of shoreline urbanization and influenced by food availability and connectivity between wetlands

    Africa’s drylands in a changing world: Challenges for wildlife conservation under climate and land-use changes in the Greater Etosha Landscape

    Get PDF
    Proclaimed in 1907, Etosha National Park in northern Namibia is an iconic dryland system with a rich history of wildlife conservation and research. A recent research symposium on wildlife conservation in the Greater Etosha Landscape (GEL) highlighted increased concern of how intensification of global change will affect wildlife conservation based on participant responses to a questionnaire. The GEL includes Etosha and surrounding areas, the latter divided by a veteri nary fence into large, private farms to the south and communal areas of residential and farming land to the north. Here, we leverage our knowledge of this ecosystem to provide insight into the broader challenges facing wildlife conservation in this vulnerable dryland environment. We first look backward, summarizing the history of wildlife conservation and research trends in the GEL based on a literature review, providing a broad-scale understanding of the socioecological pro cesses that drive dryland system dynamics. We then look forward, focusing on eight key areas of challenge and opportunity for this ecosystem: climate change, water availability and quality, vegetation and fire management, adaptability of wildlife populations, disease risk, human wildlife conflict, wildlife crime, and human dimensions of wildlife conservation. Using this model system, we summarize key lessons and identify critical threats highlighting future research needs to support wildlife management. Research in the GEL has followed a trajectory seen elsewhere reflecting an increase in complexity and integration across biological scales over time. Yet, despite these trends, a gap exists between the scope of recent research efforts and the needs of wildlife conservation to adapt to climate and land-use changes. Given the complex nature of climate change, in addition to locally existing system stressors, a framework of forward-thinking adaptive management to address these challenges, supported by integrative and multidisciplinary research could be beneficial. One critical area for growth is to better integrate research and wildlife management across land-use types. Such efforts have the potential to support wildlife conservation efforts and human development goals, while building resilience against the impacts of climate change. While our conclusions reflect the specifics of the GEL ecosystem, they have direct relevance for other African dryland systems impacted by global change

    Rabies and canine distemper virus epidemics in the red fox population of Northern Italy (2006–2010)

    Get PDF
    Since 2006 the red fox (Vulpes vulpes) population in north-eastern Italy has experienced an epidemic of canine distemper virus (CDV). Additionally, in 2008, after a thirteen-year absence from Italy, fox rabies was re-introduced in the Udine province at the national border with Slovenia. Disease intervention strategies are being developed and implemented to control rabies in this area and minimise risk to human health. Here we present empirical data and the epidemiological picture relating to these epidemics in the period 2006-2010. Of important significance for epidemiological studies of wild animals, basic mathematical models are developed to exploit information collected from the surveillance program on dead and/or living animals in order to assess the incidence of infection. These models are also used to estimate the rate of transmission of both diseases and the rate of vaccination, while correcting for a bias in early collection of CDV samples. We found that the rate of rabies transmission was roughly twice that of CDV, with an estimated effective contact between infected and susceptible fox leading to a new infection occurring once every 3 days for rabies, and once a week for CDV. We also inferred that during the early stage of the CDV epidemic, a bias in the monitoring protocol resulted in a positive sample being almost 10 times more likely to be collected than a negative sample. We estimated the rate of intake of oral vaccine at 0.006 per day, allowing us to estimate that roughly 68% of the foxes would be immunised. This was confirmed by field observations. Finally we discuss the implications for the eco-epidemiological dynamics of both epidemics in relation to control measures

    A Land-Use Perspective for Birdstrike Risk Assessment: The Attraction Risk Index

    Get PDF
    Collisions between aircraft and birds, birdstrikes, pose a serious threat to aviation safety. The occurrence of these events is influenced by land-uses in the surroundings of airports. Airports located in the same region might have different trends for birdstrike risk, due to differences in the surrounding habitats. Here we developed a quantitative tool that assesses the risk of birdstrike based on the habitats within a 13-km buffer from the airport. For this purpose, we developed Generalized Linear Models (GLMs) with binomial distribution to estimate the contribution of habitats to wildlife use of the study area, depending on season. These GLMs predictions were combined to the flight altitude of birds within the 13-km buffer, the airport traffic pattern and the severity indices associated with impacts. Our approach was developed at Venice Marco Polo International airport (VCE), located in northeast Italy and then tested at Treviso Antonio Canova International airport (TSF), which is 20 km inland. Results from the two airports revealed that both the surrounding habitats and the season had a significant influence to the pattern of risk. With regard to VCE, agricultural fields, wetlands and urban areas contributed most to the presence of birds in the study area. Furthermore, the key role of distance of land-uses from the airport on the probability of presence of birds was highlighted. The reliability of developed risk index was demonstrated since at VCE it was significantly correlated with bird strike rate. This study emphasizes the importance of the territory near airports and the wildlife use of its habitats, as factors in need of consideration for birdstrike risk assessment procedures. Information on the contribution of habitats in attracting birds, depending on season, can be used by airport managers and local authorities to plan specific interventions in the study area in order to lower the risk.Collisions between aircraft and birds, birdstrikes, pose a serious threat to aviation safety. The occurrence of these events is influenced by land-uses in the surroundings of airports. Airports located in the same region might have different trends for birdstrike risk, due to differences in the surrounding habitats. Here we developed a quantitative tool that assesses the risk of birdstrike based on the habitats within a 13-km buffer from the airport. For this purpose, we developed Generalized Linear Models (GLMs) with binomial distribution to estimate the contribution of habitats to wildlife use of the study area, depending on season. These GLMs predictions were combined to the flight altitude of birds within the 13-km buffer, the airport traffic pattern and the severity indices associated with impacts. Our approach was developed at Venice Marco Polo International airport (VCE), located in northeast Italy and then tested at Treviso Antonio Canova International airport (TSF), which is 20 km inland. Results from the two airports revealed that both the surrounding habitats and the season had a significant influence to the pattern of risk. With regard to VCE, agricultural fields, wetlands and urban areas contributed most to the presence of birds in the study area. Furthermore, the key role of distance of land-uses from the airport on the probability of presence of birds was highlighted. The reliability of developed risk index was demonstrated since at VCE it was significantly correlated with bird strike rate. This study emphasizes the importance of the territory near airports and the wildlife use of its habitats, as factors in need of consideration for birdstrike risk assessment procedures. Information on the contribution of habitats in attracting birds, depending on season, can be used by airport managers and local authorities to plan specific interventions in the study area in order to lower the risk

    Does optimal foraging theory explain why suburban Florida scrub-jays (Aphelocoma coerulescens) feed their young human-provided food?

    Full text link
    Optimal foraging theory assumes that a forager can adequately assess the quality of its prey and predicts that parents feed their young low-quality foods only when suffering unpredicted reductions in their ability to provision. Wildland Florida scrub-jays feed their young exclusively arthropods, but suburban parents include human-provided foods in the nestling diet, with possible costs in terms of reduced growth and survival. We tested experimentally whether parents feed human-provided foods, given the apparent costs, because: 1) they do not discriminate between food types, 2) they switch to low-quality, abundant foods when natural food availability in the environment is low, or 3) they switch when the time needed to obtain natural food is high. Parents discriminated between natural and human-provided foods by showing a preference for natural foods when rearing young. When the handling time of natural foods was increased experimentally, parents in the suburban and wildland habitats switched to human-provided foods. Supplementation with natural foods increased preference for this food in both habitats. Suburban parents chose more natural foods than wildland parents, suggesting that they have a greater preference for natural foods. Regardless of preferences demonstrated at feeders, parents in both the suburbs and wildlands delivered mostly natural foods to nestlings, independent of natural food availability. Nonetheless, natural foods are likely to be scarcer in the environment than in our experimental tests. Because natural food availability is lower in the suburbs than in the wildland habitat, parents in the suburbs may be forced to switch to human-provided foods when feeding nestlings
    corecore