176 research outputs found

    Increased glycation and oxidative damage to apolipoprotein B100 of LDL cholesterol in patients with type 2 diabetes and effect of metformin

    Get PDF
    OBJECTIVE The aim of this study was to investigate whether apolipoprotein B100 of LDL suffers increased damage by glycation, oxidation, and nitration in patients with type 2 diabetes, including patients receiving metformin therapy. RESEARCH DESIGN AND METHODS For this study, 32 type 2 diabetic patients and 21 healthy control subjects were recruited; 13 diabetic patients were receiving metformin therapy (median dose: 1.50 g/day). LDL was isolated from venous plasma by ultracentrifugation, delipidated, digested, and analyzed for protein glycation, oxidation, and nitration adducts by stable isotopic dilution analysis tandem mass spectrometry. RESULTS Advanced glycation end product (AGE) content of apolipoprotein B100 of LDL from type 2 diabetic patients was higher than from healthy subjects: arginine-derived AGE, 15.8 vs. 5.3 mol% (P < 0.001); and lysine-derived AGE, 2.5 vs. 1.5 mol% (P < 0.05). Oxidative damage, mainly methionine sulfoxide residues, was also increased: 2.5 vs. 1.1 molar equivalents (P < 0.001). 3-Nitrotyrosine content was decreased: 0.04 vs. 0.12 mol% (P < 0.05). In diabetic patients receiving metformin therapy, arginine-derived AGE and methionine sulfoxide were lower than in patients not receiving metformin: 19.3 vs. 8.9 mol% (P < 0.01) and 2.9 vs. 1.9 mol% (P < 0.05), respectively; 3-nitrotyrosine content was higher: 0.10 vs. 0.03 mol% (P < 0.05). Fructosyl-lysine residue content correlated positively with fasting plasma glucose. Arginine-derived AGE residue contents were intercorrelated and also correlated positively with methionine sulfoxide. CONCLUSIONS Patients with type 2 diabetes had increased arginine-derived AGEs and oxidative damage in apolipoprotein B100 of LDL. This was lower in patients receiving metformin therapy, which may contribute to decreased oxidative damage, atherogenicity, and cardiovascular disease

    IL-17C-mediated innate inflammation decreases the response to PD-1 blockade in a model of Kras-driven lung cancer

    Get PDF
    Chronic obstructive pulmonary disease (COPD) is associated with neutrophilic lung infammation and CD8 T cell exhaustion and is an important risk factor for the development of non-small cell lung cancer (NSCLC). The clinical response to programmed cell death-1 (PD-1) blockade in NSCLC patients is variable and likely afected by a coexisting COPD. The pro-infammatory cytokine interleukin-17C (IL-17C) promotes lung infammation and is present in human lung tumors. Here, we used a Krasdriven lung cancer model to examine the function of IL-17C in infammation-promoted tumor growth. Genetic ablation of Il-17c resulted in a decreased recruitment of infammatory cells into the tumor microenvironment, a decreased expression of tumor-promoting cytokines (e.g. interleukin-6 (IL-6)), and a reduced tumor proliferation in the presence of Haemophilus infuenzae- (NTHi) induced COPD-like lung infammation. Chronic COPD-like infammation was associated with the expression of PD-1 in CD8 lymphocytes and the membrane expression of the programmed death ligand (PD-L1) independent of IL-17C. Tumor growth was decreased in Il-17c defcient mice but not in wildtype mice after anti-PD-1 treatment. Our results suggest that strategies targeting innate immune mechanisms, such as blocking of IL-17C, may improve the response to anti-PD-1 treatment in lung cancer patients

    miR449 Protects Airway Regeneration by Controlling AURKA/HDAC6-Mediated Ciliary Disassembly

    Get PDF
    Airway mucociliary regeneration and function are key players for airway defense and are impaired in chronic obstructive pulmonary disease (COPD). Using transcriptome analysis in COPD-derived bronchial biopsies, we observed a positive correlation between cilia-related genes and microRNA-449 (miR449). In vitro, miR449 was strongly increased during airway epithelial mucociliary differentiation. In vivo, miR449 was upregulated during recovery from chemical or infective insults. miR0449−/− mice (both alleles are deleted) showed impaired ciliated epithelial regeneration after naphthalene and Haemophilus influenzae exposure, accompanied by more intense inflammation and emphysematous manifestations of COPD. The latter occurred spontaneously in aged miR449−/− mice. We identified Aurora kinase A and its effector target HDAC6 as key mediators in miR449-regulated ciliary homeostasis and epithelial regeneration. Aurora kinase A is downregulated upon miR449 overexpression in vitro and upregulated in miR449−/− mouse lungs. Accordingly, imaging studies showed profoundly altered cilia length and morphology accompanied by reduced mucociliary clearance. Pharmacological inhibition of HDAC6 rescued cilia length and coverage in miR449−/− cells, consistent with its tubulin-deacetylating function. Altogether, our study establishes a link between miR449, ciliary dysfunction, and COPD pathogenesis

    Spontaneous Eosinophilic Nasal Inflammation in a Genetically-Mutant Mouse: Comparative Study with an Allergic Inflammation Model

    Get PDF
    Background: Eosinophilic inflammation is a hallmark of chronic rhinosinusitis with nasal polyps. To model this disease process experimentally, nasal sensitization of mice with ovalbumin or aspergillus has been described. Here, we describe a genetically mutant mouse that develops robust spontaneous nasal eosinophilic inflammation. These mice lack the enzyme SHP-1 that down-regulates the IL-4Ra/stat6 signaling pathway. We compared nasal inflammation and inflammatory mediators in SHP-1 deficient mice (mev) and an ovalbumin-induced nasal allergy model. Methods: A novel technique of trans-pharyngeal nasal lavage was developed to obtain samples of inflammatory cells from the nasal passages of allergic and mev mice. Total and differential cell counts were performed on cytospin preparations. Expression of tissue mRNA for IL-4, IL-13, and mouse beta-defensin-1 (MBD-1) was determined by quantitative PCR. Eotaxin in the lavage fluid was assessed by ELISA. Results: Allergic and mev mice had increased total cells and eosinophils compared with controls. Expression of IL-4 was similarly increased in both allergic and mev mice, but expression of IL-13 and eotaxin was significantly greater in the allergic mice than mev mice. Eotaxin was significantly up-regulated in both allergic rhinitis and mev mice. In both models of eosinophilic inflammation, down-regulation of the innate immune marker MBD-1 was observed. Conclusions: The mev mice display spontaneous chronic nasal eosinophilic inflammation with potential utility for chroni

    Allergic lung inflammation alters neither susceptibility to Streptococcus pneumoniae infection nor inducibility of innate resistance in mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Protective host responses to respiratory pathogens are typically characterized by inflammation. However, lung inflammation is not always protective and it may even become deleterious to the host. We have recently reported substantial protection against <it>Streptococcus pneumoniae </it>(pneumococcal) pneumonia by induction of a robust inflammatory innate immune response to an inhaled bacterial lysate. Conversely, the allergic inflammation associated with asthma has been proposed to promote susceptibility to pneumococcal disease. This study sought to determine whether preexisting allergic lung inflammation influences the progression of pneumococcal pneumonia or reduces the inducibilty of protective innate immunity against bacteria.</p> <p>Methods</p> <p>To compare the effect of different inflammatory and secretory stimuli on defense against pneumonia, intraperitoneally ovalbumin-sensitized mice were challenged with inhaled pneumococci following exposure to various inhaled combinations of ovalbumin, ATP, and/or a bacterial lysate. Thus, allergic inflammation, mucin degranulation and/or stimulated innate resistance were induced prior to the infectious challenge. Pathogen killing was evaluated by assessing bacterial CFUs of lung homogenates immediately after infection, the inflammatory response to the different conditions was evaluated by measurement of cell counts of bronchoalveolar lavage fluid 18 hours after challenge, and mouse survival was assessed after seven days.</p> <p>Results</p> <p>We found no differences in survival of mice with and without allergic inflammation, nor did the induction of mucin degranulation alter survival. As we have found previously, mice treated with the bacterial lysate demonstrated substantially increased survival at seven days, and this was not altered by the presence of allergic inflammation or mucin degranulation. Allergic inflammation was associated with predominantly eosinophilic infiltration, whereas the lysate-induced response was primarily neutrophilic. The presence of allergic inflammation did not significantly alter the neutrophilic response to the lysate, and did not affect the induced bacterial killing within the lungs.</p> <p>Conclusion</p> <p>These results suggest that allergic airway inflammation neither promotes nor inhibits progression of pneumococcal lung infection in mice, nor does it influence the successful induction of stimulated innate resistance to bacteria.</p

    Individual-level socioeconomic status is associated with worse asthma morbidity in patients with asthma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Low socioeconomic status (SES) has been linked to higher morbidity in patients with chronic diseases, but may be particularly relevant to asthma, as asthmatics of lower SES may have higher exposures to indoor (e.g., cockroaches, tobacco smoke) and outdoor (e.g., urban pollution) allergens, thus increasing risk for exacerbations.</p> <p>Methods</p> <p>This study assessed associations between adult SES (measured according to educational level) and asthma morbidity, including asthma control; asthma-related emergency health service use; asthma self-efficacy, and asthma-related quality of life, in a Canadian cohort of 781 adult asthmatics. All patients underwent a sociodemographic and medical history interview and pulmonary function testing on the day of their asthma clinic visit, and completed a battery of questionnaires (Asthma Control Questionnaire, Asthma Quality of Life Questionnaire, and Asthma Self-Efficacy Scale). General Linear Models assessed associations between SES and each morbidity measure.</p> <p>Results</p> <p>Lower SES was associated with worse asthma control (F = 11.63, p < .001), greater emergency health service use (F = 5.09, p = .024), and worse asthma self-efficacy (F = 12.04, p < .01), independent of covariates. Logistic regression analyses revealed that patients with <12 years of education were 55% more likely to report an asthma-related emergency health service visit in the last year (OR = 1.55, 95%CI = 1.05-2.27). Lower SES was not related to worse asthma-related quality of life.</p> <p>Conclusions</p> <p>Results suggest that lower SES (measured according to education level), is associated with several indices of worse asthma morbidity, particularly worse asthma control, in adult asthmatics independent of disease severity. Results are consistent with previous studies linking lower SES to worse asthma in children, and add asthma to the list of chronic diseases affected by individual-level SES.</p

    Protection From Retinopathy and Other Complications in Patients With Type 1 Diabetes of Extreme Duration: The Joslin 50-Year Medalist Study

    Get PDF
    Objective: To assess complication prevalence and identify protective factors in patients with diabetes duration of \geq50 years. Characterization of a complication-free subgroup in this cohort would suggest that some individuals are protected from diabetes complications and allow identification of endogenous protective factors. Research Design and Methods: Cross-sectional, observational study of 351 U.S. residents who have survived with type 1 diabetes for \geq50 years (Medalists). Retinopathy, nephropathy, neuropathy, and cardiovascular disease were assessed in relation to HbA1c_{1c}, lipids, and advanced glycation end products (AGEs). Retrospective chart review provided longitudinal ophthalmic data for a subgroup. Results: A high proportion of Medalists remain free from proliferative diabetic retinopathy (PDR) (42.6%), nephropathy (86.9%), neuropathy (39.4%), or cardiovascular disease (51.5%). Current and longitudinal (the past 15 years) glycemic control were unrelated to complications. Subjects with high plasma carboxyethyl-lysine and pentosidine were 7.2-fold more likely to have any complication. Of Medalists without PDR, 96% with no retinopathy progression over the first 17 years of follow-up did not experience retinopathy worsening thereafter. Conclusions: The Medalist population is likely enriched for protective factors against complications. These factors might prove useful to the general population with diabetes if they can be used to induce protection against long-term complications. Specific AGE combinations were strongly associated with complications, indicating a link between AGE formation or processing with development of diabetic vasculopathy

    Inducible ASABF-Type Antimicrobial Peptide from the Sponge Suberites domuncula: Microbicidal and Hemolytic Activity in Vitro and Toxic Effect on Molluscs in Vivo†

    Get PDF
    Since sponges, as typical filter-feeders, are exposed to a high load of attacking prokaryotic and eukaryotic organisms, they are armed with a wide arsenal of antimicrobial/cytostatic low-molecular-weight, non-proteinaceous bioactive compounds. Here we present the first sponge agent belonging to the group of ASABF-type antimicrobial peptides. The ASABF gene was identified and cloned from the demosponge Suberites domuncula. The mature peptide, with a length of 64 aa residues has a predicted pI of 9.24, and comprises the characteristic CSα β structural motif. Consequently, the S. domuncula ASABF shares high similarity with the nematode ASABFs; it is distantly related to the defensins. The recombinant peptide was found to display besides microbicidal activity, anti-fungal activity. In addition, the peptide lyses human erythrocytes. The expression of ASABF is upregulated after exposure to the apoptosis-inducing agent 2,2′-dipyridyl. During the process of apoptosis of surface tissue of S. domuncula, grazing gastropods (Bittium sp.) are attracted by quinolinic acid which is synthesized through the kynurenine pathway by the enzyme 3-hydroxyanthranilate 3,4-dioxygenase (HAD). Finally, the gastropods are repelled from the sponge tissue by the ASABF. It is shown that the effector peptide ASABF is sequentially expressed after the induction of the HAD gene and a caspase, as a central enzyme executing apoptosis
    corecore