17 research outputs found

    Effect of fermentation, malting and ultrasonication on sorghum, mopane worm and <i>Moringa oleifera</i>:improvement in their nutritional, techno-functional and health promoting properties

    Get PDF
    Background: Food processing offers various benefits that contribute to food nutrition, food security and convenience. This study investigated the effect of three different processes (fermentation, malting and ultrasonication) on the nutritional, techno-functional and health-promoting properties of sorghum, mopane worm and Moringa oleifera.Methods: The fermented and malted flours were prepared at 35°C for 48 h, and for ultrasonication, samples were subjected to 10 min at 4°C with amplitudes of 40–70 Hz. The biochemical, nutritional quality and techno-functional properties of the obtained flours were analysed using standard procedures.Results: Fermentation resulted in significantly lower pH and higher titratable acidity in sorghum and mopane worm (4.32 and 4.76; 0.24 and 0.69% lactic acid, respectively), and malting resulted in higher total phenolic content and total flavonoid content in sorghum (3.23 mg GAE/g and 3.05 mg QE/g). Ultrasonication resulted in higher protein and fibre in raw sorghum flour (13.38 and 4.53%) and mopane worm (56.24 and 11.74%) while raw moringa had the highest protein (30.68%). Biomodification by fermentation in sorghum led to higher water and oil holding capacity and increased dispersibility in the ultrasonicated samples. Ultrasonication of mopane worms led to higher water holding capacity, oil holding capacity and dispersibility. Lightness was found to be significantly higher in the fermented samples in sorghum and mopane worm. Raw moringa had the greatest lightness compared to the ultrasonicated moringa. Moringa had the most redness and browning index among all samples.Conclusion: In this study, all the investigated processes were found to have caused variations in flours’ biochemical, nutritional and techno-functional properties. Ultrasonication process was noteworthy to be the most efficient to preserve the nutritional value in sorghum, mopane worm and M. oleifera flours

    Development of a Fermented Bitter Gourd (<i>Momordica charantia</i>)–Grape Beverage Using Optimized Conditions

    No full text
    Bitter gourd beverages are well acclaimed for their health benefits, which have propelled their consumption. The beverages are prepared through a fermentation process, which is one of the oldest means of preserving and enhancing the flavour of many foods. Optimized conditions for the fermentation of a bitter gourd–grape beverage were investigated in our previous study. In the present study, a statistical comparison (one-way analysis of variance (ANOVA), Tukey’s honestly significant difference (HSD) test and an independent t-test)) of grape juice, bitter gourd juice and the fermented bitter gourd–grape beverage (with and without enzymes) was carried out to find significant differences among the products. Alcohol was found to be consistent for the four products with p > 0.05, whereas significant differences (p ≤ 0.05) in the pH, antioxidant activity (ferric reducing antioxidant assay (FRAP), 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2-azinobis (3-ethyl-benzothiazoline-6-sulfonic acid) (ABTS)), total titratable acidity (TTA), total soluble solids (TSS), total flavonoid content (TFC) and total phenolic content (TPC) were observed. The fermented bitter gourd–grape beverage (FBGGB) with enzymes had the highest antidiabetic potential content (27.07). The data obtained demonstrate that fermentation indeed enhances the biochemical function of vegetables (in this case, bitter gourd) and could thus be considered for the commercial processing of bitter gourd

    Development of a Fermented Bitter Gourd (Momordica charantia)&ndash;Grape Beverage Using Optimized Conditions

    No full text
    Bitter gourd beverages are well acclaimed for their health benefits, which have propelled their consumption. The beverages are prepared through a fermentation process, which is one of the oldest means of preserving and enhancing the flavour of many foods. Optimized conditions for the fermentation of a bitter gourd&ndash;grape beverage were investigated in our previous study. In the present study, a statistical comparison (one-way analysis of variance (ANOVA), Tukey&rsquo;s honestly significant difference (HSD) test and an independent t-test)) of grape juice, bitter gourd juice and the fermented bitter gourd&ndash;grape beverage (with and without enzymes) was carried out to find significant differences among the products. Alcohol was found to be consistent for the four products with p &gt; 0.05, whereas significant differences (p &le; 0.05) in the pH, antioxidant activity (ferric reducing antioxidant assay (FRAP), 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2-azinobis (3-ethyl-benzothiazoline-6-sulfonic acid) (ABTS)), total titratable acidity (TTA), total soluble solids (TSS), total flavonoid content (TFC) and total phenolic content (TPC) were observed. The fermented bitter gourd&ndash;grape beverage (FBGGB) with enzymes had the highest antidiabetic potential content (27.07). The data obtained demonstrate that fermentation indeed enhances the biochemical function of vegetables (in this case, bitter gourd) and could thus be considered for the commercial processing of bitter gourd

    Chemical characterization and toxicity evaluation of fungal pigments for potential application in food, phamarceutical and agricultural industries

    No full text
    Concerns associated with the use of synthetic colourants backs the demand for natural colourants. Thus, the current study aimed at characterizing crude fungal pigments produced by Penicillium multicolour, P. canescens, Talaromyces verruculosus, Fusarium solani and P. herquie. This included their antioxidant and antimicrobial properties together with acute toxicity evaluation on zebrafish embryos. The identification of pigment compounds was achieved through MS and IR data. The study demonstrated a substantial radical scavenging activity of extracts ranging from 65.49 to 74.46%, close to that of ascorbic acid (89.21%). Penicillium canescens and F. solani exhibited a strong antimicrobial activity against Escherichia coli and Enterococcus aerogenes and Salmonella typhi, Staphylococcus aureus and Bacillus cereus at MIC values ranging from 1.5 to 2.5 mg/mL. However, some levels of toxicity were observed for all extracts at a concentration range of 3–5 mg/mL. Pigment by P. multicolour, T. verruculosus and F. solani were tentatively identified through IR and MS data as sclerotiorin (yellow), rubropunctamine (red) and bostrycoidin (red). In conclusion, the study demonstrates a market potential of filamentous fungi pigments due to their antioxidant, antimicrobial activities, and prominent colours. Although there are some toxicity concerns, further tests must be done using molecular docking, albino mice and cell linings
    corecore