23 research outputs found

    Variation in haemodynamic monitoring for major surgery in European nations: secondary analysis of the EuSOS dataset.

    Get PDF
    BACKGROUND: The use of cardiac output monitoring may improve patient outcomes after major surgery. However, little is known about the use of this technology across nations. METHODS: This is a secondary analysis of a previously published observational study. Patients aged 16 years and over undergoing major non-cardiac surgery in a 7-day period in April 2011 were included into this analysis. The objective is to describe prevalence and type of cardiac output monitoring used in major surgery in Europe. RESULTS: Included in the analysis were 12,170 patients from the surgical services of 426 hospitals in 28 European nations. One thousand four hundred and sixteen patients (11.6 %) were exposed to cardiac output monitoring, and 2343 patients (19.3 %) received a central venous catheter. Patients with higher American Society of Anesthesiologists (ASA) scores were more frequently exposed to cardiac output monitoring (ASA I and II, 643 patients [8.6 %]; ASA III-V, 768 patients [16.2 %]; p < 0.01) and central venous catheter (ASA I and II, 874 patients [11.8 %]; ASA III-V, 1463 patients [30.9 %]; p < 0.01). In elective surgery, 990 patients (10.8 %) were exposed to cardiac output monitoring, in urgent surgery 252 patients (11.7 %) and in emergency surgery 173 patients (19.8 %). A central venous catheter was used in 1514 patients (16.6 %) undergoing elective, in 480 patients (22.2 %) undergoing urgent and in 349 patients (39.9 %) undergoing emergency surgery. Nine hundred sixty patients (7.9 %) were monitored using arterial waveform analysis, 238 patients (2.0 %) using oesophageal Doppler ultrasound, 55 patients (0.5 %) using a pulmonary artery catheter and 44 patients (2.0 %) using other technologies. Across nations, cardiac output monitoring use varied from 0.0 % (0/249 patients) to 27.5 % (19/69 patients), whilst central venous catheter use varied from 5.6 % (7/125 patients) to 43.2 % (16/37 patients). CONCLUSIONS: One in ten patients undergoing major surgery is exposed to cardiac output monitoring whilst one in five receives a central venous catheter. The use of both technologies varies widely across Europe. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT01203605. Date of registration: 15.09.2010

    The genome of the seagrass Zostera marina reveals angiosperm adaptation to the sea

    Get PDF
    Seagrasses colonized the sea(1) on at least three independent occasions to form the basis of one of the most productive and widespread coastal ecosystems on the planet(2). Here we report the genome of Zostera marina (L.), the first, to our knowledge, marine angiosperm to be fully sequenced. This reveals unique insights into the genomic losses and gains involved in achieving the structural and physiological adaptations required for its marine lifestyle, arguably the most severe habitat shift ever accomplished by flowering plants. Key angiosperm innovations that were lost include the entire repertoire of stomatal genes(3), genes involved in the synthesis of terpenoids and ethylene signalling, and genes for ultraviolet protection and phytochromes for far-red sensing. Seagrasses have also regained functions enabling them to adjust to full salinity. Their cell walls contain all of the polysaccharides typical of land plants, but also contain polyanionic, low-methylated pectins and sulfated galactans, a feature shared with the cell walls of all macroalgae(4) and that is important for ion homoeostasis, nutrient uptake and O-2/CO2 exchange through leaf epidermal cells. The Z. marina genome resource will markedly advance a wide range of functional ecological studies from adaptation of marine ecosystems under climate warming(5,6), to unravelling the mechanisms of osmoregulation under high salinities that may further inform our understanding of the evolution of salt tolerance in crop plants(7)

    Automated Fluid Management for Treatment of Rhabdomyolysis.

    No full text
    Purpose. Fluid therapy aimed at increasing urine output is a commonly employed strategy to prevent acute kidney injury (AKI) in critically ill patients with rhabdomyolysis. Automated fluid management has the potential to optimise urine output while avoiding fluid accumulation in rhabdomyolysis patients. Methods. In a single centre clinical service evaluation we compared a convenience sample of critically ill adults with rhabdomyolysis treated with automated fluid management using the RenalGuard® device to patients managed with manual fluid adjustment following our standard rhabdomyolysis protocol. Primary outcome was number of hours with urine output >2 mL/kg during first 48 h of therapy. Results. Eight patients treated with RenalGuard were compared to 28 patients treated with manual fluid management. Number of hours of target urine output was greater in the RenalGuard versus the Standard group (176/312 (56.4%) versus 534/1305 (40.9%); p < 0.01). Urine output was significantly higher in the first 24 h in the RenalGuard group (median (IQR) 4033 mL (3682-7363) versus 2913 mL (2263-4188 mL); p < 0.01). Fluid balance, electrolyte, diuretics, and bicarbonate use were comparable between groups. Conclusions. Automated fluid management resulted in a higher urine output more quickly in the treatment of rhabdomyolysis. Further research is needed to analyse the effect of diuresis-matched hydration for the prevention of AKI in rhabdomyolysis

    Urinary metabolomic signature of esophageal cancer and Barrett’s esophagus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Esophageal adenocarcinoma (EAC) often presents at a late, incurable stage, and mortality has increased substantially, due to an increase in incidence of EAC arising out of Barrett’s esophagus. When diagnosed early, however, the combination of surgery and adjuvant therapies is associated with high cure rates. Metabolomics provides a means for non- invasive screening of early tumor-associated perturbations in cellular metabolism.</p> <p>Methods</p> <p>Urine samples from patients with esophageal carcinoma (n = 44), Barrett’s esophagus (n = 31), and healthy controls (n = 75) were examined using <sup>1</sup>H-NMR spectroscopy. Targeted profiling of spectra using Chenomx software permitted quantification of 66 distinct metabolites. Unsupervised (principal component analysis) and supervised (orthogonal partial least-squares discriminant analysis OPLS-DA) multivariate pattern recognition techniques were applied to discriminate between samples using SIMCA-P<sup>+</sup> software. Model specificity was also confirmed through comparison with a pancreatic cancer cohort (n = 32).</p> <p>Results</p> <p>Clear distinctions between esophageal cancer, Barrett’s esophagus and healthy controls were noted when OPLS-DA was applied. Model validity was confirmed using two established methods of internal validation, cross-validation and response permutation. Sensitivity and specificity of the multivariate OPLS-DA models were summarized using a receiver operating characteristic curve analysis and revealed excellent predictive power (area under the curve = 0.9810 and 0.9627 for esophageal cancer and Barrett’s esophagus, respectively). The metabolite expression profiles of esophageal cancer and pancreatic cancer were also clearly distinguishable with an area under the receiver operating characteristics curve (AUROC) = 0.8954.</p> <p>Conclusions</p> <p>Urinary metabolomics identified discrete metabolic signatures that clearly distinguished both Barrett’s esophagus and esophageal cancer from controls. The metabolite expression profile of esophageal cancer was also discrete from its precursor lesion, Barrett’s esophagus. The cancer-specific nature of this profile was confirmed through comparison with pancreatic cancer. These preliminary results suggest that urinary metabolomics may have a future potential role in non-invasive screening in these conditions.</p

    Evolution of CST function in telomere maintenance

    No full text
    Telomeres consist of an elaborate, higher-order DNA architecture, and a suite of proteins that provide protection for the chromosome terminus by blocking inappropriate recombination and nucleolytic attack. In addition, telomeres facilitate telomeric DNA replication by physical interactions with telomerase and the lagging strand replication machinery. The prevailing view has been that two distinct telomere capping complexes evolved, shelterin in vertebrates and a trimeric complex comprised of Cdc13, Stn1 and Ten1 (CST) in yeast. The recent discovery of a CST-like complex in plants and humans raises new questions about the composition of telomeres and their regulatory mechanisms in multicellular eukaryotes. In this review we discuss the evolving functions and interactions of CST components and their contributions to chromosome end protection and DNA replication
    corecore