6 research outputs found
Mesenchymal stromal cell-derived secretome-based therapy for neurodegenerative diseases: overview of clinical trials
Abstract Background Over the past few years, mesenchymal stromal cells (MSCs) have attracted a great deal of scientific attention owing to their promising results in the treatment of incurable diseases. However, there are several concerns about their possible side effects after direct cell transplantation, including host immune response, time-consuming cell culture procedures, and the dependence of cell quality on the donor, which limit the application of MSCs in clinical trials. On the other hand, it is well accepted that the beneficial effects of MSCs are mediated by secretome rather than cell replacement. MSC secretome refers to a variety of bioactive molecules involved in different biological processes, specifically neuro-regeneration. Main body Due to the limited ability of the central nervous system to compensate for neuronal loss and relieve disease progress, mesenchymal stem cell products may be used as a potential cure for central nervous system disorders. In the present study, the therapeutic effects of MSC secretome were reviewed and discussed the possible mechanisms in the three most prevalent central nervous system disorders, namely Alzheimer's disease, multiple sclerosis, and Parkinson's disease. The current work aimed to help discover new medicine for the mentioned complications. Conclusion The use of MSC-derived secretomes in the treatment of the mentioned diseases has encouraging results, so it can be considered as a treatment option for which no treatment has been introduced so far
Advanced stage, high-grade primary tumor ovarian cancer: a multi-omics dissection and biomarker prediction process
Abstract Ovarian cancer (OC) incidence and mortality rates continue to escalate globally. Early detection of OC is challenging due to extensive metastases and the ambiguity of biomarkers in advanced High-Grade Primary Tumors (HGPTs). In the present study, we conducted an in-depth in silico analysis in OC cell lines using the Gene Expression Omnibus (GEO) microarray dataset with 53 HGPT and 10 normal samples. Differentially-Expressed Genes (DEGs) were also identified by GEO2r. A variety of analyses, including gene set enrichment analysis (GSEA), ChIP enrichment analysis (ChEA), eXpression2Kinases (X2K) and Human Protein Atlas (HPA), elucidated signaling pathways, transcription factors (TFs), kinases, and proteome, respectively. Protein–Protein Interaction (PPI) networks were generated using STRING and Cytoscape, in which co-expression and hub genes were pinpointed by the cytoHubba plug-in. Validity of DEG analysis was achieved via Gene Expression Profiling Interactive Analysis (GEPIA). Of note, KIAA0101, RAD51AP1, FAM83D, CEP55, PRC1, CKS2, CDCA5, NUSAP1, ECT2, and TRIP13 were found as top 10 hub genes; SIN3A, VDR, TCF7L2, NFYA, and FOXM1 were detected as predominant TFs in HGPTs; CEP55, PRC1, CKS2, CDCA5, and NUSAP1 were identified as potential biomarkers from hub gene clustering. Further analysis indicated hsa-miR-215-5p, hsa-miR-193b-3p, and hsa-miR-192-5p as key miRNAs targeting HGPT genes. Collectively, our findings spotlighted HGPT-associated genes, TFs, miRNAs, and pathways as prospective biomarkers, offering new avenues for OC diagnostic and therapeutic approaches
Key Regulatory miRNAs and their Interplay with Mechanosensing and Mechanotransduction Signaling Pathways in Breast Cancer Progression
According to the WHO, breast cancer is the most common cancer in women worldwide. Identification of underlying mechanisms in breast cancer progression is the main concerns of researches. The mechanical forces within the tumor microenvironment, in addition to biochemical stimuli such as different growth factors and cytokines, activate signaling cascades, resulting in various changes in cancer cell physiology. Cancer cell proliferation, invasiveness, migration, and, even, resistance to cancer therapeutic agents are changed due to activation of mechanotransduction signaling. The mechanotransduction signaling is frequently dysregulated in breast cancer, indicating its important role in cancer cell features. So far, a variety of experimental investigations have been conducted to determine the main regulators of the mechanotransduction signaling. Currently, the role of miRNAs has been well-defined in the cancer process through advances in molecular-based approaches. miRNAs are small groups of RNAs (∼22 nucleotides) that contribute to various biological events in cells. The central role of miRNAs in the regulation of various mediators involved in the mechanotransduction signaling has been well clarified over the last decade. Unbalanced expression of miRNAs is associated with different pathologic conditions. Overexpression and downregulation of certain miRNAs were found to be along with dysregulation of mechanotransduction signaling effectors. This study aimed to critically review the role of miRNAs in the regulation of mediators involved in the mechanosensing pathways and clarify how the cross-talk between miRNAs and their targets affect the cell behavior and physiology of breast cancer cells
Antibody�drug conjugates (ADCs) for cancer therapy: Strategies, challenges, and successes
Targeted delivery of therapeutic molecules into cancer cells is considered as a promising strategy to tackle cancer. Antibody�drug conjugates (ADCs), in which a monoclonal antibody (mAb) is conjugated to biologically active drugs through chemical linkers, have emerged as a promising class of anticancer treatment agents, being one of the fastest growing fields in cancer therapy. The failure of early ADCs led researchers to explore strategies to develop more effective and improved ADCs with lower levels of unconjugated mAbs and more-stable linkers between the drug and the antibody, which show improved pharmacokinetic properties, therapeutic indexes, and safety profiles. Such improvements resulted in the US Food and Drug Administration approvals of brentuximab vedotin, trastuzumab emtansine, and, more recently, inotuzumab ozogamicin. In addition, recent clinical outcomes have sparked additional interest, which leads to the dramatically increased number of ADCs in clinical development. The present review explores ADCs, their main characteristics, and new research developments, as well as discusses strategies for the selection of the most appropriate target antigens, mAbs, cytotoxic drugs, linkers, and conjugation chemistries. © 2018 Wiley Periodicals, Inc